Hawkeye_AI / app.py
michaelmc1618's picture
Update app.py
c78ffbd verified
raw
history blame
3.93 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, pipeline
# Use a pipeline as a high-level helper
pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", trust_remote_code=True)
# Load model directly
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""
Generates a response based on the user message and chat history.
Args:
message (str): The user message.
history (list): A list of tuples containing user and assistant messages.
system_message (str): The system message.
max_tokens (int): Maximum number of tokens for the response.
temperature (float): Temperature for the response generation.
top_p (float): Top-p for nucleus sampling.
Yields:
str: The generated response.
"""
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def process_video(video):
"""
Processes the uploaded video file.
Args:
video (gr.Video): The uploaded video file.
Returns:
str: Confirmation message for the uploaded video.
"""
return f"Processing video: {video.name}"
def process_pdf(pdf):
"""
Processes the uploaded PDF file.
Args:
pdf (gr.File): The uploaded PDF file.
Returns:
str: Confirmation message for the uploaded PDF.
"""
return f"Processing PDF: {pdf.name}"
def process_image(image):
"""
Processes the uploaded image file.
Args:
image (gr.Image): The uploaded image file.
Returns:
str: Confirmation message for the uploaded image.
"""
return f"Processing image: {image.name}"
# Define upload interfaces
video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video")
pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF")
image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image")
# Combine upload interfaces into tabs
tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"])
# Main Gradio interface
demo = gr.Blocks()
with demo:
with gr.Tab("Chat Interface"):
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
with gr.Tab("Upload Files"):
tabbed_interface
if __name__ == "__main__":
demo.launch()