Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,267 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
os.system('pip install gradio')
|
6 |
-
os.system('pip install minijinja')
|
7 |
-
os.system('pip install PyMuPDF')
|
8 |
-
|
9 |
import gradio as gr
|
|
|
10 |
from huggingface_hub import InferenceClient
|
11 |
-
from transformers import pipeline
|
12 |
from datasets import load_dataset
|
13 |
import fitz # PyMuPDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
|
28 |
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
|
29 |
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
return
|
39 |
|
40 |
-
def
|
41 |
-
prompt =
|
42 |
response = ""
|
43 |
for message in client.chat_completion(
|
44 |
-
[{"role": "system", "content": "You are a legal expert
|
45 |
{"role": "user", "content": prompt}],
|
46 |
max_tokens=512,
|
47 |
stream=True,
|
@@ -53,38 +273,12 @@ def ask_about_pdf(pdf_text, question):
|
|
53 |
response += token
|
54 |
return response
|
55 |
|
56 |
-
def update_pdf_gallery_and_extract_text(pdf_files):
|
57 |
-
if len(pdf_files) > 0:
|
58 |
-
pdf_text = extract_text_from_pdf(pdf_files[0].name)
|
59 |
-
else:
|
60 |
-
pdf_text = ""
|
61 |
-
return pdf_files, pdf_text
|
62 |
-
|
63 |
def add_message(history, message):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
messages = [{"role": "system", "content": system_message}]
|
70 |
-
for val in history:
|
71 |
-
if val[0]:
|
72 |
-
messages.append({"role": "user", "content": val[0]})
|
73 |
-
if val[1]:
|
74 |
-
messages.append({"role": "assistant", "content": val[1]})
|
75 |
-
response = ""
|
76 |
-
for message in client.chat_completion(
|
77 |
-
messages,
|
78 |
-
max_tokens=150,
|
79 |
-
stream=True,
|
80 |
-
temperature=0.6,
|
81 |
-
top_p=0.95,
|
82 |
-
):
|
83 |
-
token = message.choices[0].delta.content
|
84 |
-
if token is not None:
|
85 |
-
response += token
|
86 |
-
history[-1][1] = response
|
87 |
-
yield history
|
88 |
|
89 |
def print_like_dislike(x: gr.LikeData):
|
90 |
print(x.index, x.value, x.liked)
|
@@ -95,56 +289,103 @@ def reset_conversation():
|
|
95 |
def save_conversation(history1, history2, shared_history):
|
96 |
return history1, history2, shared_history
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
}
|
103 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
with gr.Blocks(css=custom_css) as demo:
|
106 |
history1 = gr.State([])
|
107 |
history2 = gr.State([])
|
108 |
shared_history = gr.State([])
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
with gr.Tab("Argument Evaluation"):
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
+
import torch
|
4 |
+
import yt_dlp as youtube_dl
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM, AutoProcessor, AutoModelForSpeechSeq2Seq
|
7 |
from huggingface_hub import InferenceClient
|
|
|
8 |
from datasets import load_dataset
|
9 |
import fitz # PyMuPDF
|
10 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
+
|
12 |
+
# Constants for Whisper ASR
|
13 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
14 |
+
BATCH_SIZE = 8
|
15 |
+
FILE_LIMIT_MB = 1000
|
16 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
17 |
+
|
18 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
# Load the Whisper model and processor
|
21 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
22 |
+
model_s2s = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)
|
23 |
|
24 |
+
# Load the BERT model and tokenizer
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
26 |
+
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
|
27 |
|
28 |
+
# Create the fill-mask pipeline
|
29 |
+
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
30 |
+
|
31 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
32 |
+
|
33 |
+
def respond(
|
34 |
+
message,
|
35 |
+
history: list[tuple[str, str]],
|
36 |
+
system_message,
|
37 |
+
max_tokens,
|
38 |
+
temperature,
|
39 |
+
top_p,
|
40 |
+
):
|
41 |
+
messages = [{"role": "system", "content": system_message}]
|
42 |
+
|
43 |
+
for val in history:
|
44 |
+
if val[0]:
|
45 |
+
messages.append({"role": "user", "content": val[0]})
|
46 |
+
if val[1]:
|
47 |
+
messages.append({"role": "assistant", "content": val[1]})
|
48 |
|
49 |
+
messages.append({"role": "user", "content": message})
|
50 |
+
|
51 |
+
try:
|
52 |
+
response = ""
|
53 |
+
for message in client.chat_completion(
|
54 |
+
messages,
|
55 |
+
max_tokens=max_tokens,
|
56 |
+
stream=True,
|
57 |
+
temperature=temperature,
|
58 |
+
top_p=top_p,
|
59 |
+
):
|
60 |
+
token = message.choices[0].delta.content
|
61 |
+
if token is not None:
|
62 |
+
response += token
|
63 |
+
yield response, history + [(message, response)]
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error during chat completion: {e}")
|
66 |
+
yield "An error occurred during the chat completion.", history
|
67 |
+
|
68 |
+
def generate_case_outcome(prosecutor_response, defense_response):
|
69 |
+
prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
|
70 |
+
evaluation = ""
|
71 |
+
try:
|
72 |
+
for message in client.chat_completion(
|
73 |
+
[{"role": "system", "content": "You are a legal expert evaluating the details of the case presented by the prosecution and the defense."},
|
74 |
+
{"role": "user", "content": prompt}],
|
75 |
+
max_tokens=512,
|
76 |
+
stream=True,
|
77 |
+
temperature=0.6,
|
78 |
+
top_p=0.95,
|
79 |
+
):
|
80 |
+
token = message.choices[0].delta.content
|
81 |
+
if token is not None:
|
82 |
+
evaluation += token
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error during case outcome generation: {e}")
|
85 |
+
return "An error occurred during the case outcome generation."
|
86 |
+
return evaluation
|
87 |
+
|
88 |
+
def determine_outcome(outcome):
|
89 |
+
prosecutor_count = outcome.split().count("Prosecutor")
|
90 |
+
defense_count = outcome.split().count("Defense")
|
91 |
+
if prosecutor_count > defense_count:
|
92 |
+
return "Prosecutor Wins"
|
93 |
+
elif defense_count > prosecutor_count:
|
94 |
+
return "Defense Wins"
|
95 |
+
else:
|
96 |
+
return "No clear winner"
|
97 |
+
|
98 |
+
def transcribe(inputs, task):
|
99 |
+
if inputs is None:
|
100 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
101 |
+
|
102 |
+
inputs = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
103 |
+
with torch.no_grad():
|
104 |
+
generated_ids = model_s2s.generate(inputs["input_features"])
|
105 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
106 |
+
|
107 |
+
return transcription
|
108 |
+
|
109 |
+
def _return_yt_html_embed(yt_url):
|
110 |
+
video_id = yt_url.split("?v=")[-1]
|
111 |
+
HTML_str = (
|
112 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
113 |
+
" </center>"
|
114 |
+
)
|
115 |
+
return HTML_str
|
116 |
+
|
117 |
+
def download_yt_audio(yt_url, filename):
|
118 |
+
info_loader = youtube_dl.YoutubeDL()
|
119 |
+
|
120 |
+
try:
|
121 |
+
info = info_loader.extract_info(yt_url, download=False)
|
122 |
+
except youtube_dl.utils.DownloadError as err:
|
123 |
+
raise gr.Error(str(err))
|
124 |
+
|
125 |
+
file_length = info["duration_string"]
|
126 |
+
file_h_m_s = file_length.split(":")
|
127 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
128 |
+
|
129 |
+
if len(file_h_m_s) == 1:
|
130 |
+
file_h_m_s.insert(0, 0)
|
131 |
+
if len(file_h_m_s) == 2:
|
132 |
+
file_h_m_s.insert(0, 0)
|
133 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
134 |
+
|
135 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
136 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
137 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
138 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
139 |
+
|
140 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
141 |
+
|
142 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
143 |
+
try:
|
144 |
+
ydl.download([yt_url])
|
145 |
+
except youtube_dl.utils.ExtractorError as err:
|
146 |
+
raise gr.Error(str(err))
|
147 |
+
|
148 |
+
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
149 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
150 |
+
|
151 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
152 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
153 |
+
download_yt_audio(yt_url, filepath)
|
154 |
+
with open(filepath, "rb") as f:
|
155 |
+
inputs = f.read()
|
156 |
+
|
157 |
+
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
|
158 |
+
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
|
159 |
+
|
160 |
+
inputs = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
161 |
+
with torch.no_grad():
|
162 |
+
generated_ids = model_s2s.generate(inputs["input_features"])
|
163 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
164 |
+
|
165 |
+
return html_embed_str, transcription
|
166 |
+
|
167 |
+
# Custom CSS for white background and black text for input and output boxes
|
168 |
+
custom_css = """
|
169 |
+
body {
|
170 |
+
background-color: #ffffff;
|
171 |
+
color: #000000;
|
172 |
+
font-family: Arial, sans-serif;
|
173 |
+
}
|
174 |
+
.gradio-container {
|
175 |
+
max-width: 1000px;
|
176 |
+
margin: 0 auto;
|
177 |
+
padding: 20px;
|
178 |
+
background-color: #ffffff;
|
179 |
+
border: 1px solid #e0e0e0;
|
180 |
+
border-radius: 8px;
|
181 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
182 |
+
}
|
183 |
+
.gr-button {
|
184 |
+
background-color: #ffffff !important;
|
185 |
+
border-color: #ffffff !important;
|
186 |
+
color: #000000 !important;
|
187 |
+
margin: 5px;
|
188 |
+
}
|
189 |
+
.gr-button:hover {
|
190 |
+
background-color: #ffffff !important;
|
191 |
+
border-color: #004085 !important;
|
192 |
+
}
|
193 |
+
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
|
194 |
+
border-radius: 4px;
|
195 |
+
border: 1px solid #ced4da;
|
196 |
+
background-color: #ffffff !important;
|
197 |
+
color: #000000 !important;
|
198 |
+
}
|
199 |
+
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
|
200 |
+
border-color: #ffffff;
|
201 |
+
outline: 0;
|
202 |
+
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
|
203 |
+
}
|
204 |
+
#flagging-button {
|
205 |
+
display: none;
|
206 |
+
}
|
207 |
+
footer {
|
208 |
+
display: none;
|
209 |
+
}
|
210 |
+
.chatbox .chat-container .chat-message {
|
211 |
+
background-color: #ffffff !important;
|
212 |
+
color: #000000 !important;
|
213 |
+
}
|
214 |
+
.chatbox .chat-container .chat-message-input {
|
215 |
+
background-color: #ffffff !important;
|
216 |
+
color: #000000 !important;
|
217 |
+
}
|
218 |
+
.gr-markdown {
|
219 |
+
background-color: #ffffff !important;
|
220 |
+
color: #000000 !important;
|
221 |
+
}
|
222 |
+
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
|
223 |
+
color: #000000 !important;
|
224 |
+
}
|
225 |
+
.score-box {
|
226 |
+
width: 60px;
|
227 |
+
height: 60px;
|
228 |
+
display: flex;
|
229 |
+
align-items: center;
|
230 |
+
justify-content: center;
|
231 |
+
font-size: 12px;
|
232 |
+
font-weight: bold;
|
233 |
+
color: black;
|
234 |
+
margin: 5px;
|
235 |
+
}
|
236 |
+
.scroll-box {
|
237 |
+
max-height: 200px;
|
238 |
+
overflow-y: scroll;
|
239 |
+
border: 1px solid #ced4da;
|
240 |
+
padding: 10px;
|
241 |
+
border-radius: 4px;
|
242 |
+
}
|
243 |
+
"""
|
244 |
|
245 |
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
|
246 |
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
|
247 |
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
|
248 |
+
shared_history.append(f"Prosecutor: {response1}")
|
249 |
+
shared_history.append(f"Defense Attorney: {response2}")
|
250 |
|
251 |
+
max_length = max(len(response1), len(response2))
|
252 |
+
response1 = response1[:max_length]
|
253 |
+
response2 = response2[:max_length]
|
254 |
+
|
255 |
+
outcome = generate_case_outcome(response1, response2)
|
256 |
+
winner = determine_outcome(outcome)
|
257 |
+
|
258 |
+
return response1, response2, history1, history2, shared_history, outcome
|
259 |
|
260 |
+
def get_top_10_cases():
|
261 |
+
prompt = "List 10 high-profile legal cases that have received significant media attention and are currently ongoing. Just a list of case names and numbers."
|
262 |
response = ""
|
263 |
for message in client.chat_completion(
|
264 |
+
[{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
|
265 |
{"role": "user", "content": prompt}],
|
266 |
max_tokens=512,
|
267 |
stream=True,
|
|
|
273 |
response += token
|
274 |
return response
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
def add_message(history, message):
|
277 |
+
for x in message["files"]:
|
278 |
+
history.append(((x,), None))
|
279 |
+
if message["text"] is not None:
|
280 |
+
history.append((message["text"], None))
|
281 |
+
return history, gr.MultimodalTextbox(value=None, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
def print_like_dislike(x: gr.LikeData):
|
284 |
print(x.index, x.value, x.liked)
|
|
|
289 |
def save_conversation(history1, history2, shared_history):
|
290 |
return history1, history2, shared_history
|
291 |
|
292 |
+
def ask_about_case_outcome(shared_history, question):
|
293 |
+
prompt = f"Case Outcome: {shared_history}\n\nQuestion: {question}\n\nAnswer:"
|
294 |
+
response = ""
|
295 |
+
for message in client.chat_completion(
|
296 |
+
[{"role": "system", "content": "You are a legal expert answering questions based on the case outcome provided."},
|
297 |
+
{"role": "user", "content": prompt}],
|
298 |
+
max_tokens=512,
|
299 |
+
stream=True,
|
300 |
+
temperature=0.6,
|
301 |
+
top_p=0.95,
|
302 |
+
):
|
303 |
+
token = message.choices[0].delta.content
|
304 |
+
if token is not None:
|
305 |
+
response += token
|
306 |
+
return response
|
307 |
|
308 |
with gr.Blocks(css=custom_css) as demo:
|
309 |
history1 = gr.State([])
|
310 |
history2 = gr.State([])
|
311 |
shared_history = gr.State([])
|
312 |
+
top_10_cases = gr.State("")
|
313 |
+
|
|
|
314 |
with gr.Tab("Argument Evaluation"):
|
315 |
+
with gr.Row():
|
316 |
+
with gr.Column(scale=1):
|
317 |
+
top_10_btn = gr.Button("Give me the top 10 cases")
|
318 |
+
top_10_output = gr.Textbox(label="Top 10 Cases", interactive=False, elem_classes=["scroll-box"])
|
319 |
+
top_10_btn.click(get_top_10_cases, outputs=top_10_output)
|
320 |
+
with gr.Column(scale=2):
|
321 |
+
message = gr.Textbox(label="Case to Argue")
|
322 |
+
system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
|
323 |
+
system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
|
324 |
+
max_tokens = gr.State(512)
|
325 |
+
temperature = gr.State(0.6)
|
326 |
+
top_p = gr.State(0.95)
|
327 |
+
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column(scale=4):
|
330 |
+
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"])
|
331 |
+
with gr.Column(scale=1):
|
332 |
+
prosecutor_score_color = gr.HTML()
|
333 |
+
|
334 |
+
with gr.Column(scale=4):
|
335 |
+
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"])
|
336 |
+
with gr.Column(scale=1):
|
337 |
+
defense_score_color = gr.HTML()
|
338 |
+
|
339 |
+
outcome = gr.Textbox(label="Outcome", interactive=False, elem_classes=["scroll-box"])
|
340 |
+
|
341 |
+
with gr.Row():
|
342 |
+
submit_btn = gr.Button("Argue")
|
343 |
+
clear_btn = gr.Button("Clear and Reset")
|
344 |
+
save_btn = gr.Button("Save Conversation")
|
345 |
+
|
346 |
+
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, outcome])
|
347 |
+
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, outcome])
|
348 |
+
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
|
349 |
+
|
350 |
+
with gr.Tab("Practice Arguments"):
|
351 |
+
mf_transcribe = gr.Interface(
|
352 |
+
fn=transcribe,
|
353 |
+
inputs=[
|
354 |
+
gr.Audio(type="filepath", label="Record or Upload Audio"),
|
355 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
356 |
+
],
|
357 |
+
outputs="text",
|
358 |
+
layout="horizontal",
|
359 |
+
title="Practice Legal Arguments - Microphone",
|
360 |
+
description=(
|
361 |
+
"Practice your legal arguments by recording them through your microphone or uploading an audio file. The arguments will be transcribed for review."
|
362 |
+
),
|
363 |
+
allow_flagging="never",
|
364 |
+
)
|
365 |
+
|
366 |
+
yt_transcribe = gr.Interface(
|
367 |
+
fn=yt_transcribe,
|
368 |
+
inputs=[
|
369 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
370 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
371 |
+
],
|
372 |
+
outputs=["html", "text"],
|
373 |
+
layout="horizontal",
|
374 |
+
title="Practice Legal Arguments - YouTube",
|
375 |
+
description=(
|
376 |
+
"Practice your legal arguments by providing a YouTube video link. The arguments will be transcribed for review."
|
377 |
+
),
|
378 |
+
allow_flagging="never",
|
379 |
+
)
|
380 |
+
|
381 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Microphone", "YouTube"])
|
382 |
+
|
383 |
+
with gr.Tab("Case Outcome Chat"):
|
384 |
+
case_question = gr.Textbox(label="Ask a Question about the Case Outcome")
|
385 |
+
case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
|
386 |
+
ask_case_btn = gr.Button("Ask")
|
387 |
+
|
388 |
+
ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer)
|
389 |
+
|
390 |
+
demo.queue()
|
391 |
demo.launch()
|