Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,40 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
7 |
-
|
8 |
-
# Install torch first
|
9 |
-
install("torch")
|
10 |
-
|
11 |
-
# Install flash_attn next
|
12 |
-
install("flash_attn")
|
13 |
-
|
14 |
-
# Now install other dependencies
|
15 |
-
install("huggingface_hub==0.22.2")
|
16 |
-
install("transformers")
|
17 |
-
install("openai")
|
18 |
-
install("gradio")
|
19 |
-
install("einops")
|
20 |
-
install("timm")
|
21 |
|
22 |
import gradio as gr
|
23 |
from huggingface_hub import InferenceClient
|
24 |
-
from transformers import
|
|
|
25 |
|
26 |
-
|
27 |
-
pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", trust_remote_code=True)
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
|
|
|
|
|
|
|
32 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
33 |
|
34 |
-
def respond(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
messages = [{"role": "system", "content": system_message}]
|
|
|
36 |
for val in history:
|
37 |
if val[0]:
|
38 |
messages.append({"role": "user", "content": val[0]})
|
39 |
if val[1]:
|
40 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
41 |
messages.append({"role": "user", "content": message})
|
42 |
|
43 |
response = ""
|
@@ -49,45 +46,167 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
49 |
top_p=top_p,
|
50 |
):
|
51 |
token = message.choices[0].delta.content
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
os.system('pip install transformers')
|
3 |
+
os.system('pip install datasets')
|
4 |
+
os.system('pip install gradio')
|
5 |
+
os.system('pip install minijinja')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import InferenceClient
|
9 |
+
from transformers import pipeline
|
10 |
+
from datasets import load_dataset
|
11 |
|
12 |
+
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
|
|
|
13 |
|
14 |
+
# Use a pipeline as a high-level helper
|
15 |
+
pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
|
16 |
|
17 |
+
"""
|
18 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
19 |
+
"""
|
20 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
21 |
|
22 |
+
def respond(
|
23 |
+
message,
|
24 |
+
history: list[tuple[str, str]],
|
25 |
+
system_message,
|
26 |
+
max_tokens,
|
27 |
+
temperature,
|
28 |
+
top_p,
|
29 |
+
):
|
30 |
messages = [{"role": "system", "content": system_message}]
|
31 |
+
|
32 |
for val in history:
|
33 |
if val[0]:
|
34 |
messages.append({"role": "user", "content": val[0]})
|
35 |
if val[1]:
|
36 |
messages.append({"role": "assistant", "content": val[1]})
|
37 |
+
|
38 |
messages.append({"role": "user", "content": message})
|
39 |
|
40 |
response = ""
|
|
|
46 |
top_p=top_p,
|
47 |
):
|
48 |
token = message.choices[0].delta.content
|
49 |
+
if token is not None:
|
50 |
+
response += token
|
51 |
+
yield response, history + [(message, response)]
|
52 |
+
|
53 |
+
def score_argument(argument):
|
54 |
+
# Keywords related to legal arguments
|
55 |
+
merits_keywords = ["compelling", "convincing", "strong", "solid"]
|
56 |
+
laws_keywords = ["statute", "law", "regulation", "act"]
|
57 |
+
precedents_keywords = ["precedent", "case", "ruling", "decision"]
|
58 |
+
verdict_keywords = ["guilty", "innocent", "verdict", "judgment"]
|
59 |
+
|
60 |
+
# Initialize scores
|
61 |
+
merits_score = sum([1 for word in merits_keywords if word in argument.lower()])
|
62 |
+
laws_score = sum([1 for word in laws_keywords if word in argument.lower()])
|
63 |
+
precedents_score = sum([1 for word in precedents_keywords if word in argument.lower()])
|
64 |
+
verdict_score = sum([1 for word in verdict_keywords if word in argument.lower()])
|
65 |
+
length_score = len(argument.split())
|
66 |
+
|
67 |
+
# Additional evaluations for legal standards
|
68 |
+
merits_value = merits_score * 2 # Each keyword in merits is valued at 2 points
|
69 |
+
laws_value = laws_score * 3 # Each keyword in laws is valued at 3 points
|
70 |
+
precedents_value = precedents_score * 4 # Each keyword in precedents is valued at 4 points
|
71 |
+
verdict_value = verdict_score * 5 # Each keyword in verdict is valued at 5 points
|
72 |
+
|
73 |
+
# Total score: Sum of all individual scores
|
74 |
+
total_score = merits_value + laws_value + precedents_value + verdict_value + length_score
|
75 |
+
|
76 |
+
return total_score
|
77 |
+
|
78 |
+
def color_code(score):
|
79 |
+
# Green for high score, yellow for medium, red for low
|
80 |
+
if score > 50:
|
81 |
+
return "green"
|
82 |
+
elif score > 30:
|
83 |
+
return "yellow"
|
84 |
+
else:
|
85 |
+
return "red"
|
86 |
+
|
87 |
+
# Custom CSS for white background and black text for input and output boxes
|
88 |
+
custom_css = """
|
89 |
+
body {
|
90 |
+
background-color: #ffffff;
|
91 |
+
color: #000000;
|
92 |
+
font-family: Arial, sans-serif;
|
93 |
+
}
|
94 |
+
.gradio-container {
|
95 |
+
max-width: 1000px;
|
96 |
+
margin: 0 auto;
|
97 |
+
padding: 20px;
|
98 |
+
background-color: #ffffff;
|
99 |
+
border: 1px solid #e0e0e0;
|
100 |
+
border-radius: 8px;
|
101 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
102 |
+
}
|
103 |
+
.gr-button {
|
104 |
+
background-color: #ffffff !important;
|
105 |
+
border-color: #ffffff !important;
|
106 |
+
color: #000000 !important;
|
107 |
+
}
|
108 |
+
.gr-button:hover {
|
109 |
+
background-color: #ffffff !important;
|
110 |
+
border-color: #004085 !important;
|
111 |
+
}
|
112 |
+
.gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
|
113 |
+
border-radius: 4px;
|
114 |
+
border: 1px solid #ced4da;
|
115 |
+
background-color: #ffffff !important;
|
116 |
+
color: #000000 !important;
|
117 |
+
}
|
118 |
+
.gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
|
119 |
+
border-color: #ffffff;
|
120 |
+
outline: 0;
|
121 |
+
box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
|
122 |
+
}
|
123 |
+
#flagging-button {
|
124 |
+
display: none;
|
125 |
+
}
|
126 |
+
footer {
|
127 |
+
display: none;
|
128 |
+
}
|
129 |
+
.chatbox .chat-container .chat-message {
|
130 |
+
background-color: #ffffff !important;
|
131 |
+
color: #000000 !important;
|
132 |
+
}
|
133 |
+
.chatbox .chat-container .chat-message-input {
|
134 |
+
background-color: #ffffff !important;
|
135 |
+
color: #000000 !important;
|
136 |
+
}
|
137 |
+
.gr-markdown {
|
138 |
+
background-color: #ffffff !important;
|
139 |
+
color: #000000 !important;
|
140 |
+
}
|
141 |
+
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
|
142 |
+
color: #000000 !important;
|
143 |
+
}
|
144 |
+
.score-box {
|
145 |
+
width: 60px;
|
146 |
+
height: 60px;
|
147 |
+
display: flex;
|
148 |
+
align-items: center;
|
149 |
+
justify-content: center;
|
150 |
+
font-size: 12px;
|
151 |
+
font-weight: bold;
|
152 |
+
color: black;
|
153 |
+
margin: 5px;
|
154 |
+
}
|
155 |
+
"""
|
156 |
+
|
157 |
+
# Function to facilitate the conversation between the two chatbots
|
158 |
+
def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
|
159 |
+
response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
|
160 |
+
response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
|
161 |
+
shared_history.append(f"Prosecutor: {response1}")
|
162 |
+
shared_history.append(f"Defense Attorney: {response2}")
|
163 |
+
|
164 |
+
# Ensure the responses are balanced by limiting the length
|
165 |
+
max_length = max(len(response1), len(response2))
|
166 |
+
response1 = response1[:max_length]
|
167 |
+
response2 = response2[:max_length]
|
168 |
+
|
169 |
+
# Calculate scores and scoring matrices
|
170 |
+
score1 = score_argument(response1)
|
171 |
+
score2 = score_argument(response2)
|
172 |
+
|
173 |
+
prosecutor_color = color_code(score1)
|
174 |
+
defense_color = color_code(score2)
|
175 |
+
|
176 |
+
prosecutor_score_color = f"<div class='score-box' style='background-color:{prosecutor_color};'>Score: {score1}</div>"
|
177 |
+
defense_score_color = f"<div class='score-box' style='background-color:{defense_color};'>Score: {score2}</div>"
|
178 |
+
|
179 |
+
return response1, response2, history1, history2, shared_history, f"{response1}\n\n{response2}", prosecutor_score_color, defense_score_color
|
180 |
+
|
181 |
+
# Gradio interface
|
182 |
+
with gr.Blocks(css=custom_css) as demo:
|
183 |
+
history1 = gr.State([])
|
184 |
+
history2 = gr.State([])
|
185 |
+
shared_history = gr.State([])
|
186 |
+
message = gr.Textbox(label="Shared Input Box")
|
187 |
+
system_message1 = gr.State("You are an expert at legal Prosecution.")
|
188 |
+
system_message2 = gr.State("You are an expert at legal Defense.")
|
189 |
+
max_tokens = gr.State(512) # Adjusted to balance response length
|
190 |
+
temperature = gr.State(0.7)
|
191 |
+
top_p = gr.State(0.95)
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column(scale=4):
|
195 |
+
prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=False)
|
196 |
+
with gr.Column(scale=1):
|
197 |
+
prosecutor_score_color = gr.HTML()
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column(scale=4):
|
201 |
+
defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=False)
|
202 |
+
with gr.Column(scale=1):
|
203 |
+
defense_score_color = gr.HTML()
|
204 |
+
|
205 |
+
shared_argument = gr.Textbox(label="Shared Argument", interactive=False)
|
206 |
+
|
207 |
+
submit_btn = gr.Button("Submit")
|
208 |
+
|
209 |
+
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, shared_argument, prosecutor_score_color, defense_score_color])
|
210 |
+
|
211 |
if __name__ == "__main__":
|
212 |
demo.launch()
|