michaelmc1618 commited on
Commit
36d7e68
·
verified ·
1 Parent(s): d625ced

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +184 -65
app.py CHANGED
@@ -1,43 +1,40 @@
1
  import os
2
- import subprocess
3
- import sys
4
-
5
- def install(package):
6
- subprocess.check_call([sys.executable, "-m", "pip", "install", package])
7
-
8
- # Install torch first
9
- install("torch")
10
-
11
- # Install flash_attn next
12
- install("flash_attn")
13
-
14
- # Now install other dependencies
15
- install("huggingface_hub==0.22.2")
16
- install("transformers")
17
- install("openai")
18
- install("gradio")
19
- install("einops")
20
- install("timm")
21
 
22
  import gradio as gr
23
  from huggingface_hub import InferenceClient
24
- from transformers import AutoModelForCausalLM, pipeline
 
25
 
26
- # Use a pipeline as a high-level helper
27
- pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", trust_remote_code=True)
28
 
29
- # Load model directly
30
- model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
31
 
 
 
 
32
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
33
 
34
- def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
35
  messages = [{"role": "system", "content": system_message}]
 
36
  for val in history:
37
  if val[0]:
38
  messages.append({"role": "user", "content": val[0]})
39
  if val[1]:
40
  messages.append({"role": "assistant", "content": val[1]})
 
41
  messages.append({"role": "user", "content": message})
42
 
43
  response = ""
@@ -49,45 +46,167 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
49
  top_p=top_p,
50
  ):
51
  token = message.choices[0].delta.content
52
- response += token
53
- yield response
54
-
55
- def process_video(video):
56
- return f"Processing video: {video.name}"
57
-
58
- def process_pdf(pdf):
59
- return f"Processing PDF: {pdf.name}"
60
-
61
- def process_image(image):
62
- return f"Processing image: {image.name}"
63
-
64
- video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video")
65
- pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF")
66
- image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image")
67
-
68
- tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"])
69
-
70
- demo = gr.Blocks()
71
-
72
- with demo:
73
- with gr.Tab("Chat Interface"):
74
- gr.ChatInterface(
75
- respond,
76
- additional_inputs=[
77
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
78
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
79
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
80
- gr.Slider(
81
- minimum=0.1,
82
- maximum=1.0,
83
- value=0.95,
84
- step=0.05,
85
- label="Top-p (nucleus sampling)",
86
- ),
87
- ],
88
- )
89
- with gr.Tab("Upload Files"):
90
- tabbed_interface
91
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  if __name__ == "__main__":
93
  demo.launch()
 
1
  import os
2
+ os.system('pip install transformers')
3
+ os.system('pip install datasets')
4
+ os.system('pip install gradio')
5
+ os.system('pip install minijinja')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  import gradio as gr
8
  from huggingface_hub import InferenceClient
9
+ from transformers import pipeline
10
+ from datasets import load_dataset
11
 
12
+ dataset = load_dataset("ibunescu/qa_legal_dataset_train")
 
13
 
14
+ # Use a pipeline as a high-level helper
15
+ pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
16
 
17
+ """
18
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
19
+ """
20
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
21
 
22
+ def respond(
23
+ message,
24
+ history: list[tuple[str, str]],
25
+ system_message,
26
+ max_tokens,
27
+ temperature,
28
+ top_p,
29
+ ):
30
  messages = [{"role": "system", "content": system_message}]
31
+
32
  for val in history:
33
  if val[0]:
34
  messages.append({"role": "user", "content": val[0]})
35
  if val[1]:
36
  messages.append({"role": "assistant", "content": val[1]})
37
+
38
  messages.append({"role": "user", "content": message})
39
 
40
  response = ""
 
46
  top_p=top_p,
47
  ):
48
  token = message.choices[0].delta.content
49
+ if token is not None:
50
+ response += token
51
+ yield response, history + [(message, response)]
52
+
53
+ def score_argument(argument):
54
+ # Keywords related to legal arguments
55
+ merits_keywords = ["compelling", "convincing", "strong", "solid"]
56
+ laws_keywords = ["statute", "law", "regulation", "act"]
57
+ precedents_keywords = ["precedent", "case", "ruling", "decision"]
58
+ verdict_keywords = ["guilty", "innocent", "verdict", "judgment"]
59
+
60
+ # Initialize scores
61
+ merits_score = sum([1 for word in merits_keywords if word in argument.lower()])
62
+ laws_score = sum([1 for word in laws_keywords if word in argument.lower()])
63
+ precedents_score = sum([1 for word in precedents_keywords if word in argument.lower()])
64
+ verdict_score = sum([1 for word in verdict_keywords if word in argument.lower()])
65
+ length_score = len(argument.split())
66
+
67
+ # Additional evaluations for legal standards
68
+ merits_value = merits_score * 2 # Each keyword in merits is valued at 2 points
69
+ laws_value = laws_score * 3 # Each keyword in laws is valued at 3 points
70
+ precedents_value = precedents_score * 4 # Each keyword in precedents is valued at 4 points
71
+ verdict_value = verdict_score * 5 # Each keyword in verdict is valued at 5 points
72
+
73
+ # Total score: Sum of all individual scores
74
+ total_score = merits_value + laws_value + precedents_value + verdict_value + length_score
75
+
76
+ return total_score
77
+
78
+ def color_code(score):
79
+ # Green for high score, yellow for medium, red for low
80
+ if score > 50:
81
+ return "green"
82
+ elif score > 30:
83
+ return "yellow"
84
+ else:
85
+ return "red"
86
+
87
+ # Custom CSS for white background and black text for input and output boxes
88
+ custom_css = """
89
+ body {
90
+ background-color: #ffffff;
91
+ color: #000000;
92
+ font-family: Arial, sans-serif;
93
+ }
94
+ .gradio-container {
95
+ max-width: 1000px;
96
+ margin: 0 auto;
97
+ padding: 20px;
98
+ background-color: #ffffff;
99
+ border: 1px solid #e0e0e0;
100
+ border-radius: 8px;
101
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
102
+ }
103
+ .gr-button {
104
+ background-color: #ffffff !important;
105
+ border-color: #ffffff !important;
106
+ color: #000000 !important;
107
+ }
108
+ .gr-button:hover {
109
+ background-color: #ffffff !important;
110
+ border-color: #004085 !important;
111
+ }
112
+ .gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox {
113
+ border-radius: 4px;
114
+ border: 1px solid #ced4da;
115
+ background-color: #ffffff !important;
116
+ color: #000000 !important;
117
+ }
118
+ .gr-input:focus, .gr-textbox:focus, .gr-slider:focus {
119
+ border-color: #ffffff;
120
+ outline: 0;
121
+ box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0);
122
+ }
123
+ #flagging-button {
124
+ display: none;
125
+ }
126
+ footer {
127
+ display: none;
128
+ }
129
+ .chatbox .chat-container .chat-message {
130
+ background-color: #ffffff !important;
131
+ color: #000000 !important;
132
+ }
133
+ .chatbox .chat-container .chat-message-input {
134
+ background-color: #ffffff !important;
135
+ color: #000000 !important;
136
+ }
137
+ .gr-markdown {
138
+ background-color: #ffffff !important;
139
+ color: #000000 !important;
140
+ }
141
+ .gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li {
142
+ color: #000000 !important;
143
+ }
144
+ .score-box {
145
+ width: 60px;
146
+ height: 60px;
147
+ display: flex;
148
+ align-items: center;
149
+ justify-content: center;
150
+ font-size: 12px;
151
+ font-weight: bold;
152
+ color: black;
153
+ margin: 5px;
154
+ }
155
+ """
156
+
157
+ # Function to facilitate the conversation between the two chatbots
158
+ def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
159
+ response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
160
+ response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
161
+ shared_history.append(f"Prosecutor: {response1}")
162
+ shared_history.append(f"Defense Attorney: {response2}")
163
+
164
+ # Ensure the responses are balanced by limiting the length
165
+ max_length = max(len(response1), len(response2))
166
+ response1 = response1[:max_length]
167
+ response2 = response2[:max_length]
168
+
169
+ # Calculate scores and scoring matrices
170
+ score1 = score_argument(response1)
171
+ score2 = score_argument(response2)
172
+
173
+ prosecutor_color = color_code(score1)
174
+ defense_color = color_code(score2)
175
+
176
+ prosecutor_score_color = f"<div class='score-box' style='background-color:{prosecutor_color};'>Score: {score1}</div>"
177
+ defense_score_color = f"<div class='score-box' style='background-color:{defense_color};'>Score: {score2}</div>"
178
+
179
+ return response1, response2, history1, history2, shared_history, f"{response1}\n\n{response2}", prosecutor_score_color, defense_score_color
180
+
181
+ # Gradio interface
182
+ with gr.Blocks(css=custom_css) as demo:
183
+ history1 = gr.State([])
184
+ history2 = gr.State([])
185
+ shared_history = gr.State([])
186
+ message = gr.Textbox(label="Shared Input Box")
187
+ system_message1 = gr.State("You are an expert at legal Prosecution.")
188
+ system_message2 = gr.State("You are an expert at legal Defense.")
189
+ max_tokens = gr.State(512) # Adjusted to balance response length
190
+ temperature = gr.State(0.7)
191
+ top_p = gr.State(0.95)
192
+
193
+ with gr.Row():
194
+ with gr.Column(scale=4):
195
+ prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=False)
196
+ with gr.Column(scale=1):
197
+ prosecutor_score_color = gr.HTML()
198
+
199
+ with gr.Row():
200
+ with gr.Column(scale=4):
201
+ defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=False)
202
+ with gr.Column(scale=1):
203
+ defense_score_color = gr.HTML()
204
+
205
+ shared_argument = gr.Textbox(label="Shared Argument", interactive=False)
206
+
207
+ submit_btn = gr.Button("Submit")
208
+
209
+ submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, shared_argument, prosecutor_score_color, defense_score_color])
210
+
211
  if __name__ == "__main__":
212
  demo.launch()