michaelmc1618 commited on
Commit
3b53447
·
verified ·
1 Parent(s): 8af2689

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -33
app.py CHANGED
@@ -1,54 +1,54 @@
1
  import os
 
2
  os.system('pip install transformers')
3
  os.system('pip install datasets')
 
 
 
4
 
5
  import gradio as gr
6
  from huggingface_hub import InferenceClient
7
  from transformers import pipeline
8
  from datasets import load_dataset
 
9
 
10
- dataset = load_dataset("ibunescu/qa_legal_dataset_train")
11
-
12
- # Use a pipeline as a high-level helper
13
- pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
14
-
15
- """
16
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
17
- """
18
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
19
 
20
- def respond(
21
- message,
22
- history: list[tuple[str, str]],
23
- system_message,
24
- max_tokens,
25
- temperature,
26
- top_p,
27
- ):
28
- messages = [{"role": "system", "content": system_message}]
29
 
30
- for val in history:
31
- if val[0]:
32
- messages.append({"role": "user", "content": val[0]})
33
- if val[1]:
34
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
35
 
36
- messages.append({"role": "user", "content": message})
 
 
 
 
 
37
 
 
 
38
  response = ""
39
-
40
  for message in client.chat_completion(
41
- messages,
42
- max_tokens=max_tokens,
 
43
  stream=True,
44
- temperature=temperature,
45
- top_p=top_p,
46
  ):
47
  token = message.choices[0].delta.content
48
-
49
- response += token
50
- yield response
51
- token = message.choices[0].delta.content
52
  if token is not None:
53
  response += token
54
  return response
 
1
  import os
2
+ os.system('pip install torch') # or 'pip install tensorflow'
3
  os.system('pip install transformers')
4
  os.system('pip install datasets')
5
+ os.system('pip install gradio')
6
+ os.system('pip install minijinja')
7
+ os.system('pip install PyMuPDF')
8
 
9
  import gradio as gr
10
  from huggingface_hub import InferenceClient
11
  from transformers import pipeline
12
  from datasets import load_dataset
13
+ import fitz # PyMuPDF
14
 
15
+ client = InferenceClient()
 
 
 
 
 
 
 
 
16
 
17
+ dataset = load_dataset("ibunescu/qa_legal_dataset_train")
 
 
 
 
 
 
 
 
18
 
19
+ def score_argument_from_outcome(outcome, argument):
20
+ prosecutor_score = 0
21
+ if "Prosecutor" in outcome:
22
+ prosecutor_score = outcome.count("Prosecutor") * 2
23
+ if "won" in outcome and "Prosecutor" in outcome:
24
+ prosecutor_score += 10
25
+ return prosecutor_score
26
+
27
+ def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
28
+ response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
29
+ response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
30
+
31
+ return response1, response2, history1, history2, shared_history
32
 
33
+ def extract_text_from_pdf(pdf_file):
34
+ text = ""
35
+ doc = fitz.open(pdf_file)
36
+ for page in doc:
37
+ text += page.get_text()
38
+ return text
39
 
40
+ def ask_about_pdf(pdf_text, question):
41
+ prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
42
  response = ""
 
43
  for message in client.chat_completion(
44
+ [{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
45
+ {"role": "user", "content": prompt}],
46
+ max_tokens=512,
47
  stream=True,
48
+ temperature=0.6,
49
+ top_p=0.95,
50
  ):
51
  token = message.choices[0].delta.content
 
 
 
 
52
  if token is not None:
53
  response += token
54
  return response