Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,28 @@ os.system('pip install datasets')
|
|
4 |
os.system('pip install gradio')
|
5 |
os.system('pip install minijinja')
|
6 |
os.system('pip install PyMuPDF')
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
from huggingface_hub import InferenceClient
|
10 |
-
from transformers import pipeline
|
11 |
from datasets import load_dataset
|
12 |
import fitz # PyMuPDF
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
20 |
|
@@ -36,36 +47,44 @@ def respond(
|
|
36 |
|
37 |
messages.append({"role": "user", "content": message})
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def generate_case_outcome(prosecutor_response, defense_response):
|
53 |
prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
|
54 |
evaluation = ""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
return evaluation
|
67 |
|
68 |
-
def
|
69 |
prosecutor_count = outcome.split().count("Prosecutor")
|
70 |
defense_count = outcome.split().count("Defense")
|
71 |
if prosecutor_count > defense_count:
|
@@ -164,9 +183,9 @@ def chat_between_bots(system_message1, system_message2, max_tokens, temperature,
|
|
164 |
response2 = response2[:max_length]
|
165 |
|
166 |
outcome = generate_case_outcome(response1, response2)
|
167 |
-
winner =
|
168 |
|
169 |
-
return response1, response2, history1, history2, shared_history, outcome
|
170 |
|
171 |
def extract_text_from_pdf(pdf_file):
|
172 |
text = ""
|
@@ -175,20 +194,9 @@ def extract_text_from_pdf(pdf_file):
|
|
175 |
text += page.get_text()
|
176 |
return text
|
177 |
|
178 |
-
def ask_about_pdf(pdf_text, question):
|
179 |
-
|
180 |
-
response =
|
181 |
-
for message in client.chat_completion(
|
182 |
-
[{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
|
183 |
-
{"role": "user", "content": prompt}],
|
184 |
-
max_tokens=512,
|
185 |
-
stream=True,
|
186 |
-
temperature=0.6,
|
187 |
-
top_p=0.95,
|
188 |
-
):
|
189 |
-
token = message.choices[0].delta.content
|
190 |
-
if token is not None:
|
191 |
-
response += token
|
192 |
return response
|
193 |
|
194 |
def update_pdf_gallery_and_extract_text(pdf_files):
|
@@ -199,7 +207,7 @@ def update_pdf_gallery_and_extract_text(pdf_files):
|
|
199 |
return pdf_files, pdf_text
|
200 |
|
201 |
def get_top_10_cases():
|
202 |
-
prompt = "List
|
203 |
response = ""
|
204 |
for message in client.chat_completion(
|
205 |
[{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
|
@@ -221,27 +229,10 @@ def add_message(history, message):
|
|
221 |
history.append((message["text"], None))
|
222 |
return history, gr.MultimodalTextbox(value=None, interactive=True)
|
223 |
|
224 |
-
def bot(history):
|
225 |
system_message = "You are a helpful assistant."
|
226 |
-
|
227 |
-
|
228 |
-
if val[0]:
|
229 |
-
messages.append({"role": "user", "content": val[0]})
|
230 |
-
if val[1]:
|
231 |
-
messages.append({"role": "assistant", "content": val[1]})
|
232 |
-
response = ""
|
233 |
-
for message in client.chat_completion(
|
234 |
-
messages,
|
235 |
-
max_tokens=150,
|
236 |
-
stream=True,
|
237 |
-
temperature=0.6,
|
238 |
-
top_p=0.95,
|
239 |
-
):
|
240 |
-
token = message.choices[0].delta.content
|
241 |
-
if token is not None:
|
242 |
-
response += token
|
243 |
-
history[-1][1] = response
|
244 |
-
yield history
|
245 |
|
246 |
def print_like_dislike(x: gr.LikeData):
|
247 |
print(x.index, x.value, x.liked)
|
@@ -268,6 +259,11 @@ def ask_about_case_outcome(shared_history, question):
|
|
268 |
response += token
|
269 |
return response
|
270 |
|
|
|
|
|
|
|
|
|
|
|
271 |
with gr.Blocks(css=custom_css) as demo:
|
272 |
history1 = gr.State([])
|
273 |
history2 = gr.State([])
|
@@ -301,16 +297,15 @@ with gr.Blocks(css=custom_css) as demo:
|
|
301 |
with gr.Column(scale=1):
|
302 |
defense_score_color = gr.HTML()
|
303 |
|
304 |
-
|
305 |
-
winner = gr.Textbox(label="Winner", interactive=False, elem_classes=["scroll-box"])
|
306 |
|
307 |
with gr.Row():
|
308 |
submit_btn = gr.Button("Argue")
|
309 |
clear_btn = gr.Button("Clear and Reset")
|
310 |
save_btn = gr.Button("Save Conversation")
|
311 |
|
312 |
-
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2,
|
313 |
-
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response,
|
314 |
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
|
315 |
|
316 |
with gr.Tab("PDF Management"):
|
@@ -324,7 +319,7 @@ with gr.Blocks(css=custom_css) as demo:
|
|
324 |
|
325 |
pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
|
326 |
pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
|
327 |
-
pdf_ask_btn.click(
|
328 |
|
329 |
with gr.Tab("Chatbot"):
|
330 |
chatbot = gr.Chatbot(
|
@@ -336,7 +331,7 @@ with gr.Blocks(css=custom_css) as demo:
|
|
336 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
337 |
|
338 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
339 |
-
bot_msg = chat_msg.then(bot,
|
340 |
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
341 |
|
342 |
chatbot.like(print_like_dislike, None, None)
|
|
|
4 |
os.system('pip install gradio')
|
5 |
os.system('pip install minijinja')
|
6 |
os.system('pip install PyMuPDF')
|
7 |
+
os.system('pip install pdf2image')
|
8 |
+
os.system('pip install gradio_pdf')
|
9 |
|
10 |
import gradio as gr
|
11 |
from huggingface_hub import InferenceClient
|
12 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
|
13 |
from datasets import load_dataset
|
14 |
import fitz # PyMuPDF
|
15 |
+
from pdf2image import convert_from_path
|
16 |
+
from gradio_pdf import PDF
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
dir_ = Path(__file__).parent
|
20 |
|
21 |
dataset = load_dataset("ibunescu/qa_legal_dataset_train")
|
22 |
|
23 |
+
# Load the BERT model and tokenizer
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
25 |
+
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
|
26 |
+
|
27 |
+
# Create the fill-mask pipeline
|
28 |
+
pipe = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
29 |
|
30 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
31 |
|
|
|
47 |
|
48 |
messages.append({"role": "user", "content": message})
|
49 |
|
50 |
+
try:
|
51 |
+
response = ""
|
52 |
+
for message in client.chat_completion(
|
53 |
+
messages,
|
54 |
+
max_tokens=max_tokens,
|
55 |
+
stream=True,
|
56 |
+
temperature=temperature,
|
57 |
+
top_p=top_p,
|
58 |
+
):
|
59 |
+
token = message.choices[0].delta.content
|
60 |
+
if token is not None:
|
61 |
+
response += token
|
62 |
+
yield response, history + [(message, response)]
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error during chat completion: {e}")
|
65 |
+
yield "An error occurred during the chat completion.", history
|
66 |
|
67 |
def generate_case_outcome(prosecutor_response, defense_response):
|
68 |
prompt = f"Prosecutor's arguments: {prosecutor_response}\n\nDefense's arguments: {defense_response}\n\nProvide details on who won the case and why. Provide reasons for your decision and provide a link to the source of the case."
|
69 |
evaluation = ""
|
70 |
+
try:
|
71 |
+
for message in client.chat_completion(
|
72 |
+
[{"role": "system", "content": "You are a legal expert evaluating the details of the case presented by the prosecution and the defense."},
|
73 |
+
{"role": "user", "content": prompt}],
|
74 |
+
max_tokens=512,
|
75 |
+
stream=True,
|
76 |
+
temperature=0.6,
|
77 |
+
top_p=0.95,
|
78 |
+
):
|
79 |
+
token = message.choices[0].delta.content
|
80 |
+
if token is not None:
|
81 |
+
evaluation += token
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error during case outcome generation: {e}")
|
84 |
+
return "An error occurred during the case outcome generation."
|
85 |
return evaluation
|
86 |
|
87 |
+
def determine_outcome(outcome):
|
88 |
prosecutor_count = outcome.split().count("Prosecutor")
|
89 |
defense_count = outcome.split().count("Defense")
|
90 |
if prosecutor_count > defense_count:
|
|
|
183 |
response2 = response2[:max_length]
|
184 |
|
185 |
outcome = generate_case_outcome(response1, response2)
|
186 |
+
winner = determine_outcome(outcome)
|
187 |
|
188 |
+
return response1, response2, history1, history2, shared_history, outcome
|
189 |
|
190 |
def extract_text_from_pdf(pdf_file):
|
191 |
text = ""
|
|
|
194 |
text += page.get_text()
|
195 |
return text
|
196 |
|
197 |
+
def ask_about_pdf(pdf_text, question, history):
|
198 |
+
system_message = "You are a legal expert answering questions based on the PDF content provided."
|
199 |
+
response = list(respond(question, history, system_message, max_tokens=512, temperature=0.6, top_p=0.95))[-1][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
return response
|
201 |
|
202 |
def update_pdf_gallery_and_extract_text(pdf_files):
|
|
|
207 |
return pdf_files, pdf_text
|
208 |
|
209 |
def get_top_10_cases():
|
210 |
+
prompt = "List 10 high-profile legal cases that have received significant media attention and are currently ongoing. Just a list of case names and numbers."
|
211 |
response = ""
|
212 |
for message in client.chat_completion(
|
213 |
[{"role": "system", "content": "You are a legal research expert, able to provide information about high-profile legal cases."},
|
|
|
229 |
history.append((message["text"], None))
|
230 |
return history, gr.MultimodalTextbox(value=None, interactive=True)
|
231 |
|
232 |
+
def bot(history, message):
|
233 |
system_message = "You are a helpful assistant."
|
234 |
+
response = list(respond(message, history, system_message, max_tokens=150, temperature=0.6, top_p=0.95))[-1][0]
|
235 |
+
return response, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
def print_like_dislike(x: gr.LikeData):
|
238 |
print(x.index, x.value, x.liked)
|
|
|
259 |
response += token
|
260 |
return response
|
261 |
|
262 |
+
def qa(question: str, doc: str) -> str:
|
263 |
+
img = convert_from_path(doc)[0]
|
264 |
+
output = pipe(img, question)
|
265 |
+
return sorted(output, key=lambda x: x["score"], reverse=True)[0]['answer']
|
266 |
+
|
267 |
with gr.Blocks(css=custom_css) as demo:
|
268 |
history1 = gr.State([])
|
269 |
history2 = gr.State([])
|
|
|
297 |
with gr.Column(scale=1):
|
298 |
defense_score_color = gr.HTML()
|
299 |
|
300 |
+
outcome = gr.Textbox(label="Outcome", interactive=False, elem_classes=["scroll-box"])
|
|
|
301 |
|
302 |
with gr.Row():
|
303 |
submit_btn = gr.Button("Argue")
|
304 |
clear_btn = gr.Button("Clear and Reset")
|
305 |
save_btn = gr.Button("Save Conversation")
|
306 |
|
307 |
+
submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, outcome])
|
308 |
+
clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, outcome])
|
309 |
save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
|
310 |
|
311 |
with gr.Tab("PDF Management"):
|
|
|
319 |
|
320 |
pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
|
321 |
pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
|
322 |
+
pdf_ask_btn.click(qa, inputs=[pdf_question, pdf_text], outputs=pdf_answer)
|
323 |
|
324 |
with gr.Tab("Chatbot"):
|
325 |
chatbot = gr.Chatbot(
|
|
|
331 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
332 |
|
333 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
334 |
+
bot_msg = chat_msg.then(bot, inputs=[history1, chat_input], outputs=[chatbot, history1])
|
335 |
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
336 |
|
337 |
chatbot.like(print_like_dislike, None, None)
|