michaelmc1618 commited on
Commit
d205403
·
verified ·
1 Parent(s): 9a3a8b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -54
app.py CHANGED
@@ -15,9 +15,6 @@ dataset = load_dataset("ibunescu/qa_legal_dataset_train")
15
  # Use a pipeline as a high-level helper
16
  pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
17
 
18
- """
19
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
20
- """
21
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
22
 
23
  def respond(
@@ -52,32 +49,27 @@ def respond(
52
  yield response, history + [(message, response)]
53
 
54
  def score_argument(argument):
55
- # Keywords related to legal arguments
56
  merits_keywords = ["compelling", "convincing", "strong", "solid"]
57
  laws_keywords = ["statute", "law", "regulation", "act"]
58
  precedents_keywords = ["precedent", "case", "ruling", "decision"]
59
  verdict_keywords = ["guilty", "innocent", "verdict", "judgment"]
60
 
61
- # Initialize scores
62
  merits_score = sum([1 for word in merits_keywords if word in argument.lower()])
63
  laws_score = sum([1 for word in laws_keywords if word in argument.lower()])
64
  precedents_score = sum([1 for word in precedents_keywords if word in argument.lower()])
65
  verdict_score = sum([1 for word in verdict_keywords if word in argument.lower()])
66
  length_score = len(argument.split())
67
 
68
- # Additional evaluations for legal standards
69
- merits_value = merits_score * 2 # Each keyword in merits is valued at 2 points
70
- laws_value = laws_score * 3 # Each keyword in laws is valued at 3 points
71
- precedents_value = precedents_score * 4 # Each keyword in precedents is valued at 4 points
72
- verdict_value = verdict_score * 5 # Each keyword in verdict is valued at 5 points
73
 
74
- # Total score: Sum of all individual scores
75
  total_score = merits_value + laws_value + precedents_value + verdict_value + length_score
76
 
77
  return total_score
78
 
79
  def color_code(score):
80
- # Green for high score, yellow for medium, red for low
81
  if score > 50:
82
  return "green"
83
  elif score > 30:
@@ -153,6 +145,13 @@ footer {
153
  color: black;
154
  margin: 5px;
155
  }
 
 
 
 
 
 
 
156
  """
157
 
158
  # Function to facilitate the conversation between the two chatbots
@@ -162,12 +161,10 @@ def chat_between_bots(system_message1, system_message2, max_tokens, temperature,
162
  shared_history.append(f"Prosecutor: {response1}")
163
  shared_history.append(f"Defense Attorney: {response2}")
164
 
165
- # Ensure the responses are balanced by limiting the length
166
  max_length = max(len(response1), len(response2))
167
  response1 = response1[:max_length]
168
  response2 = response2[:max_length]
169
 
170
- # Calculate scores and scoring matrices
171
  score1 = score_argument(response1)
172
  score2 = score_argument(response2)
173
 
@@ -179,11 +176,9 @@ def chat_between_bots(system_message1, system_message2, max_tokens, temperature,
179
 
180
  return response1, response2, history1, history2, shared_history, f"{response1}\n\n{response2}", prosecutor_score_color, defense_score_color
181
 
182
- # Function to handle PDF uploads and display them in a gallery
183
  def update_pdf_gallery(pdf_files):
184
  return pdf_files
185
 
186
- # Function to add message to the chatbot
187
  def add_message(history, message):
188
  for x in message["files"]:
189
  history.append(((x,), None))
@@ -191,7 +186,6 @@ def add_message(history, message):
191
  history.append((message["text"], None))
192
  return history, gr.MultimodalTextbox(value=None, interactive=False)
193
 
194
- # Bot function to simulate response
195
  def bot(history):
196
  response = "**That's cool!**"
197
  history[-1][1] = ""
@@ -200,7 +194,6 @@ def bot(history):
200
  time.sleep(0.05)
201
  yield history
202
 
203
- # Function to handle likes and dislikes
204
  def print_like_dislike(x: gr.LikeData):
205
  print(x.index, x.value, x.liked)
206
 
@@ -210,48 +203,53 @@ with gr.Blocks(css=custom_css) as demo:
210
  shared_history = gr.State([])
211
  pdf_files = gr.State([])
212
 
213
- message = gr.Textbox(label="Case to Argue")
214
- system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
215
- system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
216
- max_tokens = gr.State(512) # Adjusted to balance response length
217
- temperature = gr.State(0.6)
218
- top_p = gr.State(0.95)
219
-
220
- with gr.Row():
221
- with gr.Column(scale=4):
222
- prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True)
223
- with gr.Column(scale=1):
224
- prosecutor_score_color = gr.HTML()
225
 
226
- with gr.Column(scale=4):
227
- defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True)
228
- with gr.Column(scale=1):
229
- defense_score_color = gr.HTML()
230
-
231
- shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
232
- pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
233
- pdf_gallery = gr.Gallery(label="PDF Gallery")
 
 
 
 
 
 
 
 
 
234
 
235
- submit_btn = gr.Button("Argue")
236
- pdf_upload_btn = gr.Button("Update PDF Gallery")
237
-
238
- submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, shared_argument, prosecutor_score_color, defense_score_color])
239
- pdf_upload_btn.click(update_pdf_gallery, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_files])
 
240
 
241
- # Chatbot section
242
- chatbot = gr.Chatbot(
243
- [],
244
- elem_id="chatbot",
245
- bubble_full_width=False
246
- )
247
 
248
- chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
249
 
250
- chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
251
- bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
252
- bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
253
 
254
- chatbot.like(print_like_dislike, None, None)
255
 
256
  demo.queue()
257
  demo.launch()
 
15
  # Use a pipeline as a high-level helper
16
  pipe = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased")
17
 
 
 
 
18
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
19
 
20
  def respond(
 
49
  yield response, history + [(message, response)]
50
 
51
  def score_argument(argument):
 
52
  merits_keywords = ["compelling", "convincing", "strong", "solid"]
53
  laws_keywords = ["statute", "law", "regulation", "act"]
54
  precedents_keywords = ["precedent", "case", "ruling", "decision"]
55
  verdict_keywords = ["guilty", "innocent", "verdict", "judgment"]
56
 
 
57
  merits_score = sum([1 for word in merits_keywords if word in argument.lower()])
58
  laws_score = sum([1 for word in laws_keywords if word in argument.lower()])
59
  precedents_score = sum([1 for word in precedents_keywords if word in argument.lower()])
60
  verdict_score = sum([1 for word in verdict_keywords if word in argument.lower()])
61
  length_score = len(argument.split())
62
 
63
+ merits_value = merits_score * 2
64
+ laws_value = laws_score * 3
65
+ precedents_value = precedents_score * 4
66
+ verdict_value = verdict_score * 5
 
67
 
 
68
  total_score = merits_value + laws_value + precedents_value + verdict_value + length_score
69
 
70
  return total_score
71
 
72
  def color_code(score):
 
73
  if score > 50:
74
  return "green"
75
  elif score > 30:
 
145
  color: black;
146
  margin: 5px;
147
  }
148
+ .scroll-box {
149
+ max-height: 200px;
150
+ overflow-y: scroll;
151
+ border: 1px solid #ced4da;
152
+ padding: 10px;
153
+ border-radius: 4px;
154
+ }
155
  """
156
 
157
  # Function to facilitate the conversation between the two chatbots
 
161
  shared_history.append(f"Prosecutor: {response1}")
162
  shared_history.append(f"Defense Attorney: {response2}")
163
 
 
164
  max_length = max(len(response1), len(response2))
165
  response1 = response1[:max_length]
166
  response2 = response2[:max_length]
167
 
 
168
  score1 = score_argument(response1)
169
  score2 = score_argument(response2)
170
 
 
176
 
177
  return response1, response2, history1, history2, shared_history, f"{response1}\n\n{response2}", prosecutor_score_color, defense_score_color
178
 
 
179
  def update_pdf_gallery(pdf_files):
180
  return pdf_files
181
 
 
182
  def add_message(history, message):
183
  for x in message["files"]:
184
  history.append(((x,), None))
 
186
  history.append((message["text"], None))
187
  return history, gr.MultimodalTextbox(value=None, interactive=False)
188
 
 
189
  def bot(history):
190
  response = "**That's cool!**"
191
  history[-1][1] = ""
 
194
  time.sleep(0.05)
195
  yield history
196
 
 
197
  def print_like_dislike(x: gr.LikeData):
198
  print(x.index, x.value, x.liked)
199
 
 
203
  shared_history = gr.State([])
204
  pdf_files = gr.State([])
205
 
206
+ with gr.Tab("Argument Evaluation"):
207
+ message = gr.Textbox(label="Case to Argue")
208
+ system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.")
209
+ system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.")
210
+ max_tokens = gr.State(512)
211
+ temperature = gr.State(0.6)
212
+ top_p = gr.State(0.95)
 
 
 
 
 
213
 
214
+ with gr.Row():
215
+ with gr.Column(scale=4):
216
+ prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True)
217
+ prosecutor_response.style(container=True).add_class("scroll-box")
218
+ with gr.Column(scale=1):
219
+ prosecutor_score_color = gr.HTML()
220
+
221
+ with gr.Column(scale=4):
222
+ defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True)
223
+ defense_response.style(container=True).add_class("scroll-box")
224
+ with gr.Column(scale=1):
225
+ defense_score_color = gr.HTML()
226
+
227
+ shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
228
+ submit_btn = gr.Button("Argue")
229
+
230
+ submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, shared_argument, prosecutor_score_color, defense_score_color])
231
 
232
+ with gr.Tab("PDF Management"):
233
+ pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
234
+ pdf_gallery = gr.Gallery(label="PDF Gallery")
235
+ pdf_upload_btn = gr.Button("Update PDF Gallery")
236
+
237
+ pdf_upload_btn.click(update_pdf_gallery, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_files])
238
 
239
+ with gr.Tab("Chatbot"):
240
+ chatbot = gr.Chatbot(
241
+ [],
242
+ elem_id="chatbot",
243
+ bubble_full_width=False
244
+ )
245
 
246
+ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
247
 
248
+ chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
249
+ bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
250
+ bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
251
 
252
+ chatbot.like(print_like_dislike, None, None)
253
 
254
  demo.queue()
255
  demo.launch()