Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,38 +8,18 @@ pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-
|
|
8 |
# Load model directly
|
9 |
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
10 |
|
11 |
-
"""
|
12 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
13 |
-
"""
|
14 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
15 |
|
16 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
17 |
-
"""
|
18 |
-
Generates a response based on the user message and chat history.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
message (str): The user message.
|
22 |
-
history (list): A list of tuples containing user and assistant messages.
|
23 |
-
system_message (str): The system message.
|
24 |
-
max_tokens (int): Maximum number of tokens for the response.
|
25 |
-
temperature (float): Temperature for the response generation.
|
26 |
-
top_p (float): Top-p for nucleus sampling.
|
27 |
-
|
28 |
-
Yields:
|
29 |
-
str: The generated response.
|
30 |
-
"""
|
31 |
messages = [{"role": "system", "content": system_message}]
|
32 |
-
|
33 |
for val in history:
|
34 |
if val[0]:
|
35 |
messages.append({"role": "user", "content": val[0]})
|
36 |
if val[1]:
|
37 |
messages.append({"role": "assistant", "content": val[1]})
|
38 |
-
|
39 |
messages.append({"role": "user", "content": message})
|
40 |
|
41 |
response = ""
|
42 |
-
|
43 |
for message in client.chat_completion(
|
44 |
messages,
|
45 |
max_tokens=max_tokens,
|
@@ -52,50 +32,20 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
52 |
yield response
|
53 |
|
54 |
def process_video(video):
|
55 |
-
"""
|
56 |
-
Processes the uploaded video file.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
video (gr.Video): The uploaded video file.
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
str: Confirmation message for the uploaded video.
|
63 |
-
"""
|
64 |
return f"Processing video: {video.name}"
|
65 |
|
66 |
def process_pdf(pdf):
|
67 |
-
"""
|
68 |
-
Processes the uploaded PDF file.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
pdf (gr.File): The uploaded PDF file.
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
str: Confirmation message for the uploaded PDF.
|
75 |
-
"""
|
76 |
return f"Processing PDF: {pdf.name}"
|
77 |
|
78 |
def process_image(image):
|
79 |
-
"""
|
80 |
-
Processes the uploaded image file.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
image (gr.Image): The uploaded image file.
|
84 |
-
|
85 |
-
Returns:
|
86 |
-
str: Confirmation message for the uploaded image.
|
87 |
-
"""
|
88 |
return f"Processing image: {image.name}"
|
89 |
|
90 |
-
# Define upload interfaces
|
91 |
video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video")
|
92 |
pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF")
|
93 |
image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image")
|
94 |
|
95 |
-
# Combine upload interfaces into tabs
|
96 |
tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"])
|
97 |
|
98 |
-
# Main Gradio interface
|
99 |
demo = gr.Blocks()
|
100 |
|
101 |
with demo:
|
|
|
8 |
# Load model directly
|
9 |
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
10 |
|
|
|
|
|
|
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
|
13 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
messages = [{"role": "system", "content": system_message}]
|
|
|
15 |
for val in history:
|
16 |
if val[0]:
|
17 |
messages.append({"role": "user", "content": val[0]})
|
18 |
if val[1]:
|
19 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
20 |
messages.append({"role": "user", "content": message})
|
21 |
|
22 |
response = ""
|
|
|
23 |
for message in client.chat_completion(
|
24 |
messages,
|
25 |
max_tokens=max_tokens,
|
|
|
32 |
yield response
|
33 |
|
34 |
def process_video(video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return f"Processing video: {video.name}"
|
36 |
|
37 |
def process_pdf(pdf):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return f"Processing PDF: {pdf.name}"
|
39 |
|
40 |
def process_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return f"Processing image: {image.name}"
|
42 |
|
|
|
43 |
video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video")
|
44 |
pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF")
|
45 |
image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image")
|
46 |
|
|
|
47 |
tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"])
|
48 |
|
|
|
49 |
demo = gr.Blocks()
|
50 |
|
51 |
with demo:
|