import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, pipeline # Use a pipeline as a high-level helper pipe = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", trust_remote_code=True) # Load model directly model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): """ Generates a response based on the user message and chat history. Args: message (str): The user message. history (list): A list of tuples containing user and assistant messages. system_message (str): The system message. max_tokens (int): Maximum number of tokens for the response. temperature (float): Temperature for the response generation. top_p (float): Top-p for nucleus sampling. Yields: str: The generated response. """ messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def process_video(video): """ Processes the uploaded video file. Args: video (gr.Video): The uploaded video file. Returns: str: Confirmation message for the uploaded video. """ return f"Processing video: {video.name}" def process_pdf(pdf): """ Processes the uploaded PDF file. Args: pdf (gr.File): The uploaded PDF file. Returns: str: Confirmation message for the uploaded PDF. """ return f"Processing PDF: {pdf.name}" def process_image(image): """ Processes the uploaded image file. Args: image (gr.Image): The uploaded image file. Returns: str: Confirmation message for the uploaded image. """ return f"Processing image: {image.name}" # Define upload interfaces video_upload = gr.Interface(fn=process_video, inputs=gr.Video(), outputs="text", title="Upload a Video") pdf_upload = gr.Interface(fn=process_pdf, inputs=gr.File(file_types=['.pdf']), outputs="text", title="Upload a PDF") image_upload = gr.Interface(fn=process_image, inputs=gr.Image(), outputs="text", title="Upload an Image") # Combine upload interfaces into tabs tabbed_interface = gr.TabbedInterface([video_upload, pdf_upload, image_upload], ["Video", "PDF", "Image"]) # Main Gradio interface demo = gr.Blocks() with demo: with gr.Tab("Chat Interface"): gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Tab("Upload Files"): tabbed_interface if __name__ == "__main__": demo.launch()