import os os.system('pip install transformers') os.system('pip install datasets') os.system('pip install gradio') os.system('pip install minijinja') os.system('pip install PyMuPDF') os.system('pip install beautifulsoup4') os.system('pip install requests') import requests from bs4 import BeautifulSoup import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline from datasets import load_dataset import fitz # PyMuPDF # Load dataset dataset = load_dataset("ibunescu/qa_legal_dataset_train") # Different pipelines for different tasks qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2") summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn") mask_filling_pipeline = pipeline("fill-mask", model="nlpaueb/legal-bert-base-uncased") # Inference client for chat completion client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content if token is not None: response += token return response, history + [(message, response)] def generate_case_outcome(prosecutor_response, defense_response): prompt = f"Prosecutor's argument: {prosecutor_response}\nDefense Attorney's argument: {defense_response}\nBased on verified sources, provide the case details and give the outcome along with reasons." evaluation = "" for message in client.chat_completion( [{"role": "system", "content": "Analyze the case and provide the outcome based on verified sources."}, {"role": "user", "content": prompt}], max_tokens=512, stream=True, temperature=0.6, top_p=0.95, ): token = message.choices[0].delta.content if token is not None: evaluation += token return evaluation def determine_winner(outcome): # Here, we extract the necessary details to declare the winner winner = "" if "Prosecutor" in outcome and "Defense" in outcome: if outcome.count("Prosecutor") > outcome.count("Defense"): winner = "Prosecutor Wins" else: winner = "Defense Wins" elif "Prosecutor" in outcome: winner = "Prosecutor Wins" elif "Defense" in outcome: winner = "Defense Wins" else: winner = "No clear winner" # Append detailed results from the verified source detailed_result = "Detailed result: " + outcome return winner + "\n\n" + detailed_result def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message): prosecutor_response, history1 = respond(message, history1, system_message1, max_tokens, temperature, top_p) defense_response, history2 = respond(message, history2, system_message2, max_tokens, temperature, top_p) shared_history.append(f"Prosecutor: {prosecutor_response}") shared_history.append(f"Defense Attorney: {defense_response}") outcome = generate_case_outcome(prosecutor_response, defense_response) winner = determine_winner(outcome) return prosecutor_response, defense_response, history1, history2, shared_history, winner def extract_text_from_pdf(pdf_file): text = "" doc = fitz.open(pdf_file) for page in doc: text += page.get_text() return text def ask_about_pdf(pdf_text, question): result = qa_pipeline(question=question, context=pdf_text) return result['answer'] def update_pdf_gallery_and_extract_text(pdf_files): if len(pdf_files) > 0: pdf_text = extract_text_from_pdf(pdf_files[0].name) else: pdf_text = "" return pdf_files, pdf_text def get_top_10_cases(): url = "https://www.courtlistener.com/?order_by=dateFiled+desc" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') cases = [] for item in soup.select('.search-result', limit=10): case_name = item.select_one('.search-result-title a').text.strip() case_number = item.select_one('.search-result-meta').text.strip().split()[-1] cases.append(f"{case_name} - Case Number: {case_number}") return "\n".join(cases) def add_message(history, message): for x in message["files"]: history.append(((x,), None)) if message["text"] is not None: history.append((message["text"], None)) return history, gr.MultimodalTextbox(value=None, interactive=False) def bot(history): system_message = "You are a helpful assistant." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) response = "" for message in client.chat_completion( messages, max_tokens=150, stream=True, temperature=0.6, top_p=0.95, ): token = message.choices[0].delta.content if token is not None: response += token history[-1][1] = response return history def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def reset_conversation(): return [], [], "", "" def save_conversation(history1, history2, shared_history): return history1, history2, shared_history def ask_about_case_outcome(shared_history, question): result = qa_pipeline(question=question, context=shared_history) return result['answer'] # Custom CSS for a clean layout custom_css = """ body { background-color: #ffffff; color: #000000; font-family: Arial, sans-serif; } .gradio-container { max-width: 1000px; margin: 0 auto; padding: 20px; background-color: #ffffff; border: 1px solid #e0e0e0; border-radius: 8px; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); } .gr-button { background-color: #ffffff !important; border-color: #ffffff !important; color: #000000 !important; margin: 5px; } .gr-button:hover { background-color: #ffffff !important; border-color: #004085 !important; } .gr-input, .gr-textbox, .gr-slider, .gr-markdown, .gr-chatbox { border-radius: 4px; border: 1px solid #ced4da; background-color: #ffffff !important; color: #000000 !important; } .gr-input:focus, .gr-textbox:focus, .gr-slider:focus { border-color: #ffffff; outline: 0; box-shadow: 0 0 0 0.2rem rgba(255, 255, 255, 1.0); } #flagging-button { display: none; } footer { display: none; } .chatbox .chat-container .chat-message { background-color: #ffffff !important; color: #000000 !important; } .chatbox .chat-container .chat-message-input { background-color: #ffffff !important; color: #000000 !important; } .gr-markdown { background-color: #ffffff !important; color: #000000 !important; } .gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6, .gr-markdown p, .gr-markdown ul, .gr-markdown ol, .gr-markdown li { color: #000000 !important; } .score-box { width: 60px; height: 60px; display: flex; align-items: center; justify-content: center; font-size: 12px; font-weight: bold; color: black; margin: 5px; } .scroll-box { max-height: 200px; overflow-y: scroll; border: 1px solid #ced4da; padding: 10px; border-radius: 4px; } """ with gr.Blocks(css=custom_css) as demo: history1 = gr.State([]) history2 = gr.State([]) shared_history = gr.State([]) pdf_files = gr.State([]) pdf_text = gr.State("") top_10_cases = gr.State("") with gr.Tab("Argument Evaluation"): gr.Markdown("# Argument Evaluation", elem_classes=["gr-title"]) gr.Markdown("## Prosecutor vs. Defense Attorney", elem_classes=["gr-subtitle"]) with gr.Row(): with gr.Column(scale=1): top_10_btn = gr.Button("Give me the top 10 cases") top_10_output = gr.Markdown(elem_classes=["scroll-box"]) top_10_btn.click(get_top_10_cases, outputs=top_10_output) with gr.Column(scale=2): message = gr.Textbox(label="Enter Case Details to Argue", placeholder="Enter case details here...") system_message1 = gr.State("You are an expert Prosecutor. Give your best arguments for the case on behalf of the prosecution.") system_message2 = gr.State("You are an expert Defense Attorney. Give your best arguments for the case on behalf of the Defense.") max_tokens = gr.State(512) temperature = gr.State(0.6) top_p = gr.State(0.95) with gr.Row(): with gr.Column(scale=4): prosecutor_response = gr.Textbox(label="Prosecutor's Response", interactive=True, elem_classes=["scroll-box"]) with gr.Column(scale=1): prosecutor_score_color = gr.HTML() with gr.Column(scale=4): defense_response = gr.Textbox(label="Defense Attorney's Response", interactive=True, elem_classes=["scroll-box"]) with gr.Column(scale=1): defense_score_color = gr.HTML() winner = gr.Textbox(label="Winner", interactive=False, elem_classes=["scroll-box"]) with gr.Row(): submit_btn = gr.Button("Argue") clear_btn = gr.Button("Clear and Reset") save_btn = gr.Button("Save Conversation") submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_history, winner]) clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, winner]) save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history]) # Inner HTML for asking about the case outcome with gr.Row(): case_question = gr.Textbox(label="Ask a Question about the Case Outcome", placeholder="Enter your question here...") case_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"]) ask_case_btn = gr.Button("Ask") ask_case_btn.click(ask_about_case_outcome, inputs=[shared_history, case_question], outputs=case_answer) with gr.Tab("PDF Management"): gr.Markdown("# PDF Management", elem_classes=["gr-title"]) pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"]) pdf_gallery = gr.Gallery(label="PDF Gallery") pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"]) pdf_question = gr.Textbox(label="Ask a Question about the PDF", placeholder="Enter your question here...") pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"]) pdf_upload_btn = gr.Button("Update PDF Gallery") pdf_ask_btn = gr.Button("Ask") pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text]) pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view) pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer) with gr.Tab("Chatbot"): gr.Markdown("# Chatbot", elem_classes=["gr-title"]) chatbot = gr.Chatbot( [], elem_id="chatbot", bubble_full_width=False ) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) chatbot.like(print_like_dislike, None, None) demo.queue() demo.launch()