Spaces:
Sleeping
Sleeping
from torchvision import datasets, transforms | |
from torch.utils.data import DataLoader | |
def get_data_loaders(data_dir, batch_size=32): | |
# Data augmentation + normalization for training | |
transform_train = transforms.Compose([ | |
transforms.RandomResizedCrop(128), | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomRotation(10), | |
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) | |
]) | |
# Only resize + normalize for validation | |
transform_val = transforms.Compose([ | |
transforms.Resize((128, 128)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) | |
]) | |
train_dir = f"{data_dir}/training" | |
val_dir = f"{data_dir}/validation" | |
train_dataset = datasets.ImageFolder(train_dir, transform=transform_train) | |
val_dataset = datasets.ImageFolder(val_dir, transform=transform_val) | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) | |
return train_loader, val_loader, train_dataset.classes | |