Michael Rey
commited on
Commit
ยท
3adc61e
1
Parent(s):
0baccc0
initial commit
Browse files- WA_Fn-UseC_-Telco-Customer-Churn.csv +0 -0
- app.py +123 -0
- requirements.txt +6 -0
WA_Fn-UseC_-Telco-Customer-Churn.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.svm import SVC
|
9 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
10 |
+
|
11 |
+
# Custom Streamlit styling with sticky navbar
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
<style>
|
15 |
+
body {
|
16 |
+
background-color: #1E1E1E;
|
17 |
+
color: #FFFFFF;
|
18 |
+
font-family: 'Arial', sans-serif;
|
19 |
+
}
|
20 |
+
.stButton>button {
|
21 |
+
background-color: #4A90E2;
|
22 |
+
color: #FFFFFF;
|
23 |
+
border-radius: 15px;
|
24 |
+
padding: 12px 24px;
|
25 |
+
font-size: 16px;
|
26 |
+
font-weight: bold;
|
27 |
+
}
|
28 |
+
.title {
|
29 |
+
color: #64FFDA;
|
30 |
+
text-shadow: 1px 1px #FF4C4C;
|
31 |
+
}
|
32 |
+
.stTabs [data-testid="stHorizontalBlock"] {
|
33 |
+
position: sticky;
|
34 |
+
top: 0;
|
35 |
+
background-color: #1E1E1E;
|
36 |
+
z-index: 10;
|
37 |
+
}
|
38 |
+
</style>
|
39 |
+
""",
|
40 |
+
unsafe_allow_html=True
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load the Telco Customer Churn dataset
|
44 |
+
st.title("๐ฒ Telco Customer Churn Prediction")
|
45 |
+
st.markdown("<h2 class='title'>Predict whether a customer will churn! ๐</h2>", unsafe_allow_html=True)
|
46 |
+
|
47 |
+
# Load dataset
|
48 |
+
file_path = 'WA_Fn-UseC_-Telco-Customer-Churn.csv'
|
49 |
+
df = pd.read_csv(file_path)
|
50 |
+
|
51 |
+
# Preprocess data and train model (runs once)
|
52 |
+
df = df[['tenure', 'MonthlyCharges', 'TotalCharges', 'Churn']]
|
53 |
+
df = df.replace(" ", np.nan).dropna()
|
54 |
+
df['TotalCharges'] = pd.to_numeric(df['TotalCharges'])
|
55 |
+
df['Churn'] = df['Churn'].apply(lambda x: 1 if x == 'Yes' else 0)
|
56 |
+
|
57 |
+
# Define features and target
|
58 |
+
X = df.drop('Churn', axis=1)
|
59 |
+
y = df['Churn']
|
60 |
+
|
61 |
+
# Split data
|
62 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
63 |
+
|
64 |
+
# Scale data
|
65 |
+
scaler = StandardScaler()
|
66 |
+
X_train = scaler.fit_transform(X_train)
|
67 |
+
X_test = scaler.transform(X_test)
|
68 |
+
|
69 |
+
# Train Support Vector Machine Model
|
70 |
+
model = SVC(kernel='linear', probability=True, random_state=42)
|
71 |
+
model.fit(X_train, y_train)
|
72 |
+
y_pred = model.predict(X_test)
|
73 |
+
|
74 |
+
# Top Tabs Navigation
|
75 |
+
tab1, tab2, tab3 = st.tabs(["๐ Dataset", "๐ Visualization", "๐ฎ Prediction"])
|
76 |
+
|
77 |
+
# Dataset Section
|
78 |
+
with tab1:
|
79 |
+
st.write("### ๐ Dataset Preview")
|
80 |
+
st.dataframe(df.head())
|
81 |
+
|
82 |
+
# Visualization Section
|
83 |
+
with tab2:
|
84 |
+
# Display model performance
|
85 |
+
accuracy = accuracy_score(y_test, y_pred)
|
86 |
+
st.write("### ๐ฅ Model Performance")
|
87 |
+
st.write(f"**โ
Model Accuracy:** {accuracy:.2f}")
|
88 |
+
|
89 |
+
# Visualizing performance
|
90 |
+
st.write("### ๐ Performance Breakdown")
|
91 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
92 |
+
st.write("Confusion Matrix:")
|
93 |
+
fig, ax = plt.subplots()
|
94 |
+
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
|
95 |
+
st.pyplot(fig)
|
96 |
+
|
97 |
+
# Prediction Section
|
98 |
+
with tab3:
|
99 |
+
st.write("### ๐ฎ Predict Customer Churn")
|
100 |
+
st.markdown("Adjust the stats below to simulate a customer scenario!")
|
101 |
+
|
102 |
+
tenure = st.slider("Customer Tenure (Months)", min_value=0, max_value=72, value=12)
|
103 |
+
monthly_charges = st.slider("Monthly Charges ($)", min_value=0, max_value=200, value=50)
|
104 |
+
total_charges = st.slider("Total Charges ($)", min_value=0, max_value=10000, value=600)
|
105 |
+
|
106 |
+
if st.button("โจ Predict Churn"):
|
107 |
+
input_data = scaler.transform([[tenure, monthly_charges, total_charges]])
|
108 |
+
prediction = model.predict(input_data)[0]
|
109 |
+
prediction_proba = model.predict_proba(input_data)[0]
|
110 |
+
|
111 |
+
st.subheader("๐ฎ Prediction Result")
|
112 |
+
result_text = "๐จ Customer is likely to CHURN!" if prediction == 1 else "โ
Customer is likely to STAY."
|
113 |
+
st.success(result_text) if prediction == 0 else st.error(result_text)
|
114 |
+
st.write(f"Confidence: {prediction_proba[prediction]:.2f}")
|
115 |
+
|
116 |
+
# Churn/Stay Bar Chart
|
117 |
+
st.write("### ๐ Churn Probability Breakdown")
|
118 |
+
fig, ax = plt.subplots()
|
119 |
+
ax.bar(["Stay", "Churn"], [prediction_proba[0], prediction_proba[1]], color=["#64FFDA", "#FF4C4C"])
|
120 |
+
ax.set_ylim(0, 1)
|
121 |
+
ax.set_ylabel("Probability")
|
122 |
+
ax.set_title("Customer Churn Probability")
|
123 |
+
st.pyplot(fig)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
seaborn
|
6 |
+
scikit-learn
|