|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix |
|
|
|
|
|
df = pd.read_csv("Social_Network_Ads.csv") |
|
df = df.drop(columns=["User ID"]) |
|
|
|
|
|
st.title("Social Network Ads - Customer Purchase Prediction") |
|
st.write("#### Predict if a user will purchase a product based on Age & Salary using Logistic Regression.") |
|
|
|
|
|
st.write("#### Dataset Preview:") |
|
st.dataframe(df.head()) |
|
|
|
|
|
st.write("#### Data Distribution") |
|
fig, ax = plt.subplots(1, 2, figsize=(12, 5)) |
|
sns.histplot(df["Age"], bins=20, kde=True, ax=ax[0], color="blue") |
|
ax[0].set_title("Age Distribution") |
|
sns.histplot(df["EstimatedSalary"], bins=20, kde=True, ax=ax[1], color="green") |
|
ax[1].set_title("Salary Distribution") |
|
st.pyplot(fig) |
|
|
|
|
|
X = df[["Age", "EstimatedSalary"]] |
|
y = df["Purchased"] |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
scaler = StandardScaler() |
|
X_train = scaler.fit_transform(X_train) |
|
X_test = scaler.transform(X_test) |
|
|
|
|
|
model = LogisticRegression() |
|
model.fit(X_train, y_train) |
|
y_pred = model.predict(X_test) |
|
accuracy = accuracy_score(y_test, y_pred) |
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
|
|
|
|
st.write("### π Model Performance") |
|
st.write(f"**Model Accuracy:** {accuracy:.2f}") |
|
st.write("#### Classification Report:") |
|
st.text(classification_report(y_test, y_pred)) |
|
|
|
st.write("#### Confusion Matrix:") |
|
fig, ax = plt.subplots() |
|
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=["Not Purchased", "Purchased"], yticklabels=["Not Purchased", "Purchased"]) |
|
st.pyplot(fig) |
|
|
|
|
|
st.write("### π€ Try the Model") |
|
st.write("Enter details to check if a customer will purchase.") |
|
|
|
age = st.slider("Select Age", min_value=int(X["Age"].min()), max_value=int(X["Age"].max()), value=30) |
|
salary = st.slider("Select Estimated Salary", min_value=int(X["EstimatedSalary"].min()), max_value=int(X["EstimatedSalary"].max()), value=50000) |
|
|
|
if st.button("Predict Purchase"): |
|
input_data = scaler.transform([[age, salary]]) |
|
prediction = model.predict(input_data)[0] |
|
prediction_proba = model.predict_proba(input_data)[0] |
|
|
|
st.subheader("Prediction Result") |
|
result_text = "Yes! The user is likely to purchase." if prediction == 1 else "No, the user is not likely to purchase." |
|
st.success(result_text) if prediction == 1 else st.warning(result_text) |
|
st.write(f"Confidence: {prediction_proba[prediction]:.2f}") |
|
|