Michael Rey commited on
Commit
fc29f39
ยท
1 Parent(s): 56f4745

initial commit

Browse files
Files changed (3) hide show
  1. app.py +128 -0
  2. high_diamond_ranked_10min.csv +0 -0
  3. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.preprocessing import StandardScaler
8
+ from sklearn.linear_model import LogisticRegression
9
+ from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
10
+
11
+ # Custom Streamlit styling - Dark mode version
12
+ st.markdown(
13
+ """
14
+ <style>
15
+ body {
16
+ background-color: #1E1E1E;
17
+ color: #FFFFFF;
18
+ font-family: 'Arial', sans-serif;
19
+ }
20
+ .stButton>button {
21
+ background-color: #4A90E2;
22
+ color: #FFFFFF;
23
+ border-radius: 15px;
24
+ padding: 12px 24px;
25
+ font-size: 16px;
26
+ font-weight: bold;
27
+ }
28
+ # .stSlider>div>div>div {
29
+ # background-color: #4A90E2;
30
+ }
31
+ .title {
32
+ color: #64FFDA;
33
+ text-shadow: 1px 1px #FF4C4C;
34
+ }
35
+ # .stSlider label, .stSlider>div>div>span {
36
+ # color: #FFFFFF !important;
37
+ }
38
+ </style>
39
+ """,
40
+ unsafe_allow_html=True
41
+ )
42
+
43
+ # Load the League of Legends dataset
44
+ st.title("๐ŸŽฎ League of Legends Game Win Predictor")
45
+ st.markdown("<h2 class='title'>Predict whether the Blue Team will dominate the game! ๐Ÿ’ฅ</h2>", unsafe_allow_html=True)
46
+
47
+ # Load dataset directly
48
+ file_path = 'high_diamond_ranked_10min.csv'
49
+ df = pd.read_csv(file_path)
50
+ st.write("### ๐Ÿ“Š Dataset Preview")
51
+ st.dataframe(df.head())
52
+
53
+ # Select relevant columns
54
+ df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']]
55
+ df = df.dropna()
56
+
57
+ # Define features and target
58
+ X = df.drop('blueWins', axis=1)
59
+ y = df['blueWins']
60
+
61
+ # Split data
62
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
63
+
64
+ # Scale data
65
+ scaler = StandardScaler()
66
+ X_train = scaler.fit_transform(X_train)
67
+ X_test = scaler.transform(X_test)
68
+
69
+ # Train Logistic Regression Model
70
+ model = LogisticRegression(random_state=42)
71
+ model.fit(X_train, y_train)
72
+ y_pred = model.predict(X_test)
73
+
74
+ # Display model performance
75
+ accuracy = accuracy_score(y_test, y_pred)
76
+ st.write("### ๐Ÿ”ฅ Model Performance")
77
+ st.write(f"**โœ… Model Accuracy:** {accuracy:.2f}")
78
+
79
+ # Visualizing performance
80
+ st.write("### ๐Ÿ“Š Performance Breakdown")
81
+ conf_matrix = confusion_matrix(y_test, y_pred)
82
+ st.write("Confusion Matrix:")
83
+ fig, ax = plt.subplots()
84
+ sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
85
+ st.pyplot(fig)
86
+
87
+ # Feature Importance Visualization
88
+ st.write("### ๐Ÿ” Feature Importance")
89
+ feature_importance = abs(model.coef_[0])
90
+ features = X.columns
91
+ fig, ax = plt.subplots()
92
+ ax.barh(features, feature_importance, color='#4A90E2')
93
+ ax.set_title("Feature Importance for Blue Team Win Prediction")
94
+ ax.set_xlabel("Importance")
95
+ st.pyplot(fig)
96
+
97
+ # Prediction section
98
+ st.write("### ๐ŸŽฎ Predict Game Outcome")
99
+ st.markdown("Adjust the stats below to simulate a match scenario!")
100
+
101
+ first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1])
102
+ kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5)
103
+ deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5)
104
+ assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10)
105
+ total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000)
106
+ total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000)
107
+ dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1)
108
+ heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0)
109
+ towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2)
110
+
111
+ if st.button("โœจ Predict Win"):
112
+ input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]])
113
+ prediction = model.predict(input_data)[0]
114
+ prediction_proba = model.predict_proba(input_data)[0]
115
+
116
+ st.subheader("๐Ÿ”ฎ Prediction Result")
117
+ result_text = "๐Ÿ… Blue Team is likely to WIN! ๐ŸŽ‰" if prediction == 1 else "โš”๏ธ Blue Team is likely to LOSE. ๐Ÿ˜ž"
118
+ st.success(result_text) if prediction == 1 else st.error(result_text)
119
+ st.write(f"Confidence: {prediction_proba[prediction]:.2f}")
120
+
121
+ # Win/Loss Bar Chart
122
+ st.write("### ๐Ÿ“Š Win Probability Breakdown")
123
+ fig, ax = plt.subplots()
124
+ ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"])
125
+ ax.set_ylim(0, 1)
126
+ ax.set_ylabel("Probability")
127
+ ax.set_title("Blue Team Win/Loss Probability")
128
+ st.pyplot(fig)
high_diamond_ranked_10min.csv ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ numpy
4
+ matplotlib
5
+ seaborn
6
+ scikit-learn