Michael Rey
commited on
Commit
ยท
fc29f39
1
Parent(s):
56f4745
initial commit
Browse files- app.py +128 -0
- high_diamond_ranked_10min.csv +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.linear_model import LogisticRegression
|
9 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
10 |
+
|
11 |
+
# Custom Streamlit styling - Dark mode version
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
<style>
|
15 |
+
body {
|
16 |
+
background-color: #1E1E1E;
|
17 |
+
color: #FFFFFF;
|
18 |
+
font-family: 'Arial', sans-serif;
|
19 |
+
}
|
20 |
+
.stButton>button {
|
21 |
+
background-color: #4A90E2;
|
22 |
+
color: #FFFFFF;
|
23 |
+
border-radius: 15px;
|
24 |
+
padding: 12px 24px;
|
25 |
+
font-size: 16px;
|
26 |
+
font-weight: bold;
|
27 |
+
}
|
28 |
+
# .stSlider>div>div>div {
|
29 |
+
# background-color: #4A90E2;
|
30 |
+
}
|
31 |
+
.title {
|
32 |
+
color: #64FFDA;
|
33 |
+
text-shadow: 1px 1px #FF4C4C;
|
34 |
+
}
|
35 |
+
# .stSlider label, .stSlider>div>div>span {
|
36 |
+
# color: #FFFFFF !important;
|
37 |
+
}
|
38 |
+
</style>
|
39 |
+
""",
|
40 |
+
unsafe_allow_html=True
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load the League of Legends dataset
|
44 |
+
st.title("๐ฎ League of Legends Game Win Predictor")
|
45 |
+
st.markdown("<h2 class='title'>Predict whether the Blue Team will dominate the game! ๐ฅ</h2>", unsafe_allow_html=True)
|
46 |
+
|
47 |
+
# Load dataset directly
|
48 |
+
file_path = 'high_diamond_ranked_10min.csv'
|
49 |
+
df = pd.read_csv(file_path)
|
50 |
+
st.write("### ๐ Dataset Preview")
|
51 |
+
st.dataframe(df.head())
|
52 |
+
|
53 |
+
# Select relevant columns
|
54 |
+
df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']]
|
55 |
+
df = df.dropna()
|
56 |
+
|
57 |
+
# Define features and target
|
58 |
+
X = df.drop('blueWins', axis=1)
|
59 |
+
y = df['blueWins']
|
60 |
+
|
61 |
+
# Split data
|
62 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
63 |
+
|
64 |
+
# Scale data
|
65 |
+
scaler = StandardScaler()
|
66 |
+
X_train = scaler.fit_transform(X_train)
|
67 |
+
X_test = scaler.transform(X_test)
|
68 |
+
|
69 |
+
# Train Logistic Regression Model
|
70 |
+
model = LogisticRegression(random_state=42)
|
71 |
+
model.fit(X_train, y_train)
|
72 |
+
y_pred = model.predict(X_test)
|
73 |
+
|
74 |
+
# Display model performance
|
75 |
+
accuracy = accuracy_score(y_test, y_pred)
|
76 |
+
st.write("### ๐ฅ Model Performance")
|
77 |
+
st.write(f"**โ
Model Accuracy:** {accuracy:.2f}")
|
78 |
+
|
79 |
+
# Visualizing performance
|
80 |
+
st.write("### ๐ Performance Breakdown")
|
81 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
82 |
+
st.write("Confusion Matrix:")
|
83 |
+
fig, ax = plt.subplots()
|
84 |
+
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax)
|
85 |
+
st.pyplot(fig)
|
86 |
+
|
87 |
+
# Feature Importance Visualization
|
88 |
+
st.write("### ๐ Feature Importance")
|
89 |
+
feature_importance = abs(model.coef_[0])
|
90 |
+
features = X.columns
|
91 |
+
fig, ax = plt.subplots()
|
92 |
+
ax.barh(features, feature_importance, color='#4A90E2')
|
93 |
+
ax.set_title("Feature Importance for Blue Team Win Prediction")
|
94 |
+
ax.set_xlabel("Importance")
|
95 |
+
st.pyplot(fig)
|
96 |
+
|
97 |
+
# Prediction section
|
98 |
+
st.write("### ๐ฎ Predict Game Outcome")
|
99 |
+
st.markdown("Adjust the stats below to simulate a match scenario!")
|
100 |
+
|
101 |
+
first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1])
|
102 |
+
kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5)
|
103 |
+
deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5)
|
104 |
+
assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10)
|
105 |
+
total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000)
|
106 |
+
total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000)
|
107 |
+
dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1)
|
108 |
+
heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0)
|
109 |
+
towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2)
|
110 |
+
|
111 |
+
if st.button("โจ Predict Win"):
|
112 |
+
input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]])
|
113 |
+
prediction = model.predict(input_data)[0]
|
114 |
+
prediction_proba = model.predict_proba(input_data)[0]
|
115 |
+
|
116 |
+
st.subheader("๐ฎ Prediction Result")
|
117 |
+
result_text = "๐
Blue Team is likely to WIN! ๐" if prediction == 1 else "โ๏ธ Blue Team is likely to LOSE. ๐"
|
118 |
+
st.success(result_text) if prediction == 1 else st.error(result_text)
|
119 |
+
st.write(f"Confidence: {prediction_proba[prediction]:.2f}")
|
120 |
+
|
121 |
+
# Win/Loss Bar Chart
|
122 |
+
st.write("### ๐ Win Probability Breakdown")
|
123 |
+
fig, ax = plt.subplots()
|
124 |
+
ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"])
|
125 |
+
ax.set_ylim(0, 1)
|
126 |
+
ax.set_ylabel("Probability")
|
127 |
+
ax.set_title("Blue Team Win/Loss Probability")
|
128 |
+
st.pyplot(fig)
|
high_diamond_ranked_10min.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
seaborn
|
6 |
+
scikit-learn
|