import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, confusion_matrix # Custom Streamlit styling with sticky navbar st.markdown( """ """, unsafe_allow_html=True ) # Load the League of Legends dataset st.title("League of Legends Game Win Predictor") st.markdown("#### Predict whether the Blue Team will dominate the game using Random Forest Classifier", unsafe_allow_html=True) # Load dataset directly file_path = 'high_diamond_ranked_10min.csv' df = pd.read_csv(file_path) # Preprocess data and train model (runs once) df = df[['blueFirstBlood', 'blueKills', 'blueDeaths', 'blueAssists', 'blueTotalGold', 'blueTotalExperience', 'blueDragons', 'blueHeralds', 'blueTowersDestroyed', 'blueWins']] df = df.dropna() # Define features and target X = df.drop('blueWins', axis=1) y = df['blueWins'] # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Scale data scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # Train Logistic Regression Model model = LogisticRegression(random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) # Top Tabs Navigation tab1, tab2, tab3 = st.tabs(["📊 Dataset", "📈 Visualization", "🎮 Prediction"]) # Dataset Section with tab1: st.write("### 📊 Dataset Preview") st.dataframe(df.head()) # Visualization Section with tab2: # Display model performance accuracy = accuracy_score(y_test, y_pred) st.write("### 🔥 Model Performance") st.write(f"**✅ Model Accuracy:** {accuracy:.2f}") # Visualizing performance st.write("### 📊 Performance Breakdown") conf_matrix = confusion_matrix(y_test, y_pred) st.write("Confusion Matrix:") fig, ax = plt.subplots() sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='coolwarm', ax=ax) st.pyplot(fig) # Feature Importance Visualization st.write("### 🔍 Feature Importance") feature_importance = abs(model.coef_[0]) features = X.columns fig, ax = plt.subplots() ax.barh(features, feature_importance, color='#4A90E2') ax.set_title("Feature Importance for Blue Team Win Prediction") ax.set_xlabel("Importance") st.pyplot(fig) # Prediction Section with tab3: st.write("### 🎮 Predict Game Outcome") st.markdown("Adjust the stats below to simulate a match scenario!") first_blood = st.selectbox("Did Blue Team Get First Blood?", [0, 1]) kills = st.slider("Blue Team Kills", min_value=0, max_value=50, value=5) deaths = st.slider("Blue Team Deaths", min_value=0, max_value=50, value=5) assists = st.slider("Blue Team Assists", min_value=0, max_value=50, value=10) total_gold = st.slider("Blue Team Total Gold", min_value=10000, max_value=100000, value=50000) total_exp = st.slider("Blue Team Total Experience", min_value=10000, max_value=100000, value=50000) dragons = st.slider("Blue Team Dragons Taken", min_value=0, max_value=5, value=1) heralds = st.slider("Blue Team Heralds Taken", min_value=0, max_value=2, value=0) towers = st.slider("Blue Team Towers Destroyed", min_value=0, max_value=11, value=2) if st.button("✨ Predict Win"): input_data = scaler.transform([[first_blood, kills, deaths, assists, total_gold, total_exp, dragons, heralds, towers]]) prediction = model.predict(input_data)[0] prediction_proba = model.predict_proba(input_data)[0] st.subheader("🔮 Prediction Result") result_text = "🏅 Blue Team is likely to WIN! 🎉" if prediction == 1 else "⚔️ Blue Team is likely to LOSE. 😞" st.success(result_text) if prediction == 1 else st.error(result_text) st.write(f"Confidence: {prediction_proba[prediction]:.2f}") # Win/Loss Bar Chart st.write("### 📊 Win Probability Breakdown") fig, ax = plt.subplots() ax.bar(["Win", "Lose"], [prediction_proba[1], prediction_proba[0]], color=["#64FFDA", "#FF4C4C"]) ax.set_ylim(0, 1) ax.set_ylabel("Probability") ax.set_title("Blue Team Win/Loss Probability") st.pyplot(fig)