Michael Rey
commited on
Commit
Β·
dd84fb0
1
Parent(s):
a486ddb
added all files
Browse files- README.md +2 -2
- app.py +65 -0
- database.csv +0 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: streamlit
|
|
|
1 |
---
|
2 |
+
title: Earthquake Location Clustering Using DBSCAN
|
3 |
+
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: streamlit
|
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
from sklearn.cluster import DBSCAN
|
6 |
+
|
7 |
+
# Title
|
8 |
+
st.title("π Earthquake Location Clustering")
|
9 |
+
st.markdown("#### Explore how earthquakes are grouped based on their geographic locations using DBSCAN")
|
10 |
+
|
11 |
+
# Load dataset
|
12 |
+
df = pd.read_csv("database.csv")
|
13 |
+
|
14 |
+
# Clean and filter necessary columns
|
15 |
+
df = df[['Latitude', 'Longitude']].dropna()
|
16 |
+
|
17 |
+
# Standardize data
|
18 |
+
scaler = StandardScaler()
|
19 |
+
X_scaled = scaler.fit_transform(df[['Latitude', 'Longitude']])
|
20 |
+
|
21 |
+
# Apply DBSCAN
|
22 |
+
db = DBSCAN(eps=0.3, min_samples=5)
|
23 |
+
df['Cluster'] = db.fit_predict(X_scaled)
|
24 |
+
|
25 |
+
# Tabs
|
26 |
+
tab1, tab2, tab3 = st.tabs(["π Raw Earthquake Data", "πΊοΈ Cluster Visualization", "π Guess Cluster"])
|
27 |
+
|
28 |
+
with tab1:
|
29 |
+
st.header("π Earthquake Data")
|
30 |
+
st.dataframe(df[['Latitude', 'Longitude', 'Cluster']].head(10))
|
31 |
+
|
32 |
+
with tab2:
|
33 |
+
st.header("πΊοΈ Earthquake Clusters Plot")
|
34 |
+
st.write("Scatter plot showing how earthquakes are grouped based on their locations.")
|
35 |
+
|
36 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
37 |
+
scatter = ax.scatter(df['Longitude'], df['Latitude'], c=df['Cluster'], cmap='rainbow', s=10)
|
38 |
+
ax.set_xlabel('Longitude')
|
39 |
+
ax.set_ylabel('Latitude')
|
40 |
+
ax.set_title('Earthquake Location Clusters')
|
41 |
+
st.pyplot(fig)
|
42 |
+
|
43 |
+
with tab3:
|
44 |
+
st.header("π Which Cluster Is An Earthquake In?")
|
45 |
+
st.write("Pick a location to see what cluster it would belong to.")
|
46 |
+
|
47 |
+
lat = st.slider("Latitude", float(df['Latitude'].min()), float(df['Latitude'].max()), 0.0)
|
48 |
+
lon = st.slider("Longitude", float(df['Longitude'].min()), float(df['Longitude'].max()), 0.0)
|
49 |
+
|
50 |
+
# Scaling the new input data point
|
51 |
+
new_point = scaler.transform([[lat, lon]])
|
52 |
+
|
53 |
+
# Apply DBSCAN to the whole dataset including the new point
|
54 |
+
updated_data = pd.DataFrame(df[['Latitude', 'Longitude']].values.tolist() + [[lat, lon]], columns=['Latitude', 'Longitude'])
|
55 |
+
updated_scaled = scaler.transform(updated_data)
|
56 |
+
|
57 |
+
db_updated = DBSCAN(eps=0.5, min_samples=5)
|
58 |
+
clusters = db_updated.fit_predict(updated_scaled)
|
59 |
+
|
60 |
+
new_cluster = clusters[-1]
|
61 |
+
|
62 |
+
if new_cluster == -1:
|
63 |
+
st.warning("This point does not belong to any cluster (outlier).")
|
64 |
+
else:
|
65 |
+
st.success(f"This point likely belongs to **Cluster {new_cluster}**.")
|
database.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
scikit-learn
|
5 |
+
numpy
|