Spaces:
Running
Running
import gradio as gr | |
from transformers import BarkModel, AutoProcessor | |
import torch | |
from scipy.io.wavfile import write as write_wav | |
import os | |
## if you run on GPU use the following code: #### | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device) | |
model.enable_cpu_offload() | |
# ### if you run on CPU use the following code: #### | |
# device = "cpu" | |
# ### load in fp16 | |
# model = BarkModel.from_pretrained("suno/bark-small").to(device) | |
processor = AutoProcessor.from_pretrained("suno/bark") | |
voice_preset = "v2/en_speaker_3" | |
# generate audio | |
# def generate_audio(text, preset, output_file_name="bark_generation"): | |
# file_name = output_file_name + ".wav" | |
# inputs = processor(text, voice_preset=preset) | |
# audio_array = model.generate(**inputs) | |
# audio_array = audio_array.cpu().numpy().squeeze() | |
# sample_rate = model.generation_config.sample_rate | |
# write_wav(file_name, sample_rate, audio_array) | |
# return file_name | |
def generate_audio(text, preset, output_file_name="bark_generation"): | |
file_name = output_file_name + ".wav" | |
inputs = processor(text, voice_preset=preset) | |
# Ensure the inputs are on the right device | |
for k, v in inputs.items(): | |
if isinstance(v, torch.Tensor): | |
inputs[k] = v.to(device) | |
audio_array = model.generate(**inputs) | |
audio_array = audio_array.cpu().numpy().squeeze() | |
sample_rate = model.generation_config.sample_rate | |
write_wav(file_name, sample_rate, audio_array) | |
return file_name | |
#Bark Presets List | |
presets = ["v2/en_speaker_0","v2/en_speaker_1", "v2/en_speaker_2", "v2/en_speaker_3", "v2/en_speaker_4", "v2/en_speaker_5", "v2/en_speaker_6"] | |
#Gradio Interface | |
iface = gr.Interface(fn=generate_audio, inputs=["text", gr.components.Dropdown(choices=presets), "text"], outputs="audio") | |
iface.launch() |