Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/micknikolic/enron
|
2 |
+
|
3 |
+
# here are the imports
|
4 |
+
|
5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain import OpenAI, VectorDBQA
|
10 |
+
from langchain.document_loaders import DirectoryLoader
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
|
13 |
+
import os
|
14 |
+
import nltk
|
15 |
+
import pytesseract
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
pd.set_option('display.max_columns',None,
|
19 |
+
'display.max_rows',None,
|
20 |
+
'display.max_colwidth',None
|
21 |
+
)
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
import os
|
25 |
+
import re
|
26 |
+
import io
|
27 |
+
|
28 |
+
import gradio
|
29 |
+
|
30 |
+
import warnings
|
31 |
+
warnings.filterwarnings('ignore')
|
32 |
+
|
33 |
+
# here is the code
|
34 |
+
|
35 |
+
# data loading.
|
36 |
+
# i am using a subset of the enron dataset, as it would be computationally very expensive to work with over 500k observations locally.
|
37 |
+
|
38 |
+
data = pd.read_csv('subset_enron.csv',encoding='utf-8')
|
39 |
+
data = data.sample(frac=0.01,random_state=12) #(5174, 2)
|
40 |
+
|
41 |
+
# Text pre-processing.
|
42 |
+
|
43 |
+
cleaned_message = data["message"].apply(lambda x: re.sub(r'\\{1,2}n', '', x))
|
44 |
+
content = cleaned_message.tolist()
|
45 |
+
class Document:
|
46 |
+
def __init__(self, page_content, metadata=None):
|
47 |
+
self.page_content = page_content
|
48 |
+
self.metadata = metadata if metadata is not None else {}
|
49 |
+
|
50 |
+
documents = [Document(page_content) for page_content in content]
|
51 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
52 |
+
texts = text_splitter.split_documents(documents)
|
53 |
+
|
54 |
+
openAI_embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("openai_api_key"))
|
55 |
+
vStore = Chroma.from_documents(documents=texts, embedding=openAI_embeddings)
|
56 |
+
|
57 |
+
# Retrieval QA
|
58 |
+
|
59 |
+
model_retrieval = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=os.getenv("openai_api_key"),
|
60 |
+
temperature=0.2,
|
61 |
+
top_p=0.2,
|
62 |
+
max_tokens=2000),
|
63 |
+
chain_type="stuff", retriever=vStore.as_retriever())
|
64 |
+
|
65 |
+
# Building Gradio based app. The Retrieval model.
|
66 |
+
|
67 |
+
def get_answer(question):
|
68 |
+
"""
|
69 |
+
Returns the answer on a given question.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
question (string): end-user's input.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
the model's answer based on the enron emails dataset.
|
76 |
+
"""
|
77 |
+
response = model_retrieval.run(question)
|
78 |
+
return response
|
79 |
+
|
80 |
+
iface = gradio.Interface(
|
81 |
+
fn=get_answer,
|
82 |
+
inputs=gradio.Textbox(label="Enter your question here"),
|
83 |
+
outputs=[
|
84 |
+
gradio.Textbox(label="Answer")],
|
85 |
+
title="Retrieval QA for the subset of the Enron dataset",
|
86 |
+
examples=[
|
87 |
+
"Who are the senders of these emails?",
|
88 |
+
"What's at the center of these emails?"
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
iface.launch()
|