Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
import transformers
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
-
|
6 |
-
checkpoint = "bigscience/bloomz" # english
|
7 |
-
#checkpoint = "bigscience/bloomz-7b1-mt" # non english
|
8 |
-
|
9 |
-
import torch
|
10 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
11 |
-
|
12 |
-
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
13 |
-
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=False).to(device)
|
14 |
-
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
16 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
17 |
-
|
18 |
-
def get_result(prompt):
|
19 |
-
# prompt = f"'''{str(prompt)}'''"
|
20 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
21 |
-
outputs = model.generate(inputs, max_length= len(prompt)+1000)
|
22 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
-
|
24 |
-
title = "Bloomz (english small)"
|
25 |
-
description = "Write an instruction and get the Bloomz result."
|
26 |
-
examples = [["Translate to English: Je t'aime."]]
|
27 |
-
|
28 |
-
demo = gr.Interface(fn=get_result, inputs="text", outputs="text",
|
29 |
-
title=title,
|
30 |
-
description=description,
|
31 |
-
examples=examples,
|
32 |
-
allow_flagging="never")
|
33 |
-
|
34 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
+
gr.Interface.load(("huggingface/bigscience/bloomz"), allow_flagging=True, enable_queue=True, api_key="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").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|