Spaces:
Runtime error
Runtime error
File size: 4,235 Bytes
acc4ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
{
"cells": [
{
"cell_type": "markdown",
"id": "25c90e9e",
"metadata": {},
"source": [
"# Loading from LangChainHub\n",
"\n",
"This notebook covers how to load chains from [LangChainHub](https://github.com/hwchase17/langchain-hub)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8b54479e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import load_chain\n",
"\n",
"chain = load_chain(\"lc://chains/llm-math/chain.json\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4828f31f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
"whats 2 raised to .12\u001b[32;1m\u001b[1;3m\n",
"Answer: 1.0791812460476249\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 1.0791812460476249'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"whats 2 raised to .12\")"
]
},
{
"cell_type": "markdown",
"id": "8db72cda",
"metadata": {},
"source": [
"Sometimes chains will require extra arguments that were not serialized with the chain. For example, a chain that does question answering over a vector database will require a vector database."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "aab39528",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain import OpenAI, VectorDBQA"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "16a85d5e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"vectorstore = Chroma.from_documents(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6a82e91e",
"metadata": {},
"outputs": [],
"source": [
"chain = load_chain(\"lc://chains/vector-db-qa/stuff/chain.json\", vectorstore=vectorstore)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "efe9b25b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" The president said that Ketanji Brown Jackson is a Circuit Court of Appeals Judge, one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans, and will continue Justice Breyer's legacy of excellence.\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"chain.run(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f910a32f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|