File size: 19,150 Bytes
acc4ffe 32c26b5 acc4ffe 32c26b5 acc4ffe 32c26b5 acc4ffe 32c26b5 acc4ffe 32c26b5 acc4ffe 32c26b5 acc4ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# example call script
# https://dev.azure.com/visionbio/objectdetection/_git/objectdetection?path=/verify/langimg.py&version=GBehazar/langchain&_a=contents
import re
import io
import os
import ssl
from typing import Optional, Tuple
import datetime
import sys
import gradio as gr
import requests
import json
from threading import Lock
from langchain import ConversationChain, LLMChain
from langchain.agents import load_tools, initialize_agent, Tool
from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import PALChain
from langchain.llms import AzureOpenAI
from langchain.utilities import ImunAPIWrapper, ImunMultiAPIWrapper
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError
import argparse
# header_key = os.environ.get("CVFIAHMED_KEY")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
TOOLS_LIST = ['pal-math', 'imun'] #'google-search','news-api','tmdb-api','open-meteo-api'
TOOLS_DEFAULT_LIST = ['pal-math', 'imun']
BUG_FOUND_MSG = "Congratulations, you've found a bug in this application!"
AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. "
MAX_TOKENS = 512
############ GLOBAL CHAIN ###########
# chain = None
# memory = None
#####################################
############ GLOBAL IMAGE_COUNT #####
IMAGE_COUNT=0
#####################################
############## ARGS #################
AGRS = None
#####################################
# Temporarily address Wolfram Alpha SSL certificate issue
ssl._create_default_https_context = ssl._create_unverified_context
def get_caption_onnx_api(imgf):
headers = {
'Content-Type': 'application/octet-stream',
'Ocp-Apim-Subscription-Key': header_key,
}
params = {
'features': 'description',
'model-version': 'latest',
'language': 'en',
'descriptionExclude': 'Celebrities,Landmarks',
}
with open(imgf, 'rb') as f:
data = f.read()
response = requests.post('https://cvfiahmed.cognitiveservices.azure.com/vision/v2022-07-31-preview/operations/imageanalysis:analyze', params=params, headers=headers, data=data)
return json.loads(response.content)['descriptionResult']['values'][0]['text']
def reset_memory(history):
# global memory
# memory.clear()
print ("clearning memory, loading langchain...")
load_chain()
history = []
return history, history
def load_chain(history):
global ARGS
# global chain
# global memory
# memory = None
if ARGS.openAIModel == 'openAIGPT35':
# openAI GPT 3.5
llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureChatGPT':
# for Azure OpenAI ChatGPT
# Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1
# llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=1, top_p=0.9, max_tokens=MAX_TOKENS)
llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureGPT35turbo':
llm = AzureOpenAI(deployment_name="gpt-35-turbo-version-0301", model_name="gpt-35-turbo (version 0301)", temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureTextDavinci003':
# for Azure OpenAI ChatGPT
# Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1
llm = AzureOpenAI(deployment_name="text-davinci-003", model_name="text-davinci-003", temperature=0, max_tokens=MAX_TOKENS)
# tool_names = TOOLS_DEFAULT_LIST
# tools = load_tools(tool_names, llm=llm)
memory = ConversationBufferMemory(memory_key="chat_history")
#############################
# loading tools
imun_dense = ImunAPIWrapper(
imun_url="https://ehazarwestus.cognitiveservices.azure.com/computervision/imageanalysis:analyze",
params="api-version=2023-02-01-preview&model-version=latest&features=denseCaptions",
imun_subscription_key=os.environ.get("IMUN_SUBSCRIPTION_KEY2"))
imun = ImunAPIWrapper()
imun = ImunMultiAPIWrapper(imuns=[imun, imun_dense])
imun_celeb = ImunAPIWrapper(
imun_url="https://cvfiahmed.cognitiveservices.azure.com/vision/v3.2/models/celebrities/analyze",
params="")
imun_read = ImunAPIWrapper(
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-read:analyze",
params="api-version=2022-08-31",
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_receipt = ImunAPIWrapper(
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-receipt:analyze",
params="api-version=2022-08-31",
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_businesscard = ImunAPIWrapper(
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-businessCard:analyze",
params="api-version=2022-08-31",
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_layout = ImunAPIWrapper(
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-layout:analyze",
params="api-version=2022-08-31",
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
bing = BingSearchAPIWrapper(k=2)
def edit_photo(query: str) -> str:
endpoint = "http://10.123.124.92:7863/"
query = query.strip()
url_idx = query.rfind(" ")
img_url = query[url_idx + 1:].strip()
if img_url.endswith((".", "?")):
img_url = img_url[:-1]
if not img_url.startswith(("http://", "https://")):
return "Invalid image URL"
img_url = img_url.replace("0.0.0.0", "10.123.124.92")
instruction = query[:url_idx]
# This should be some internal IP to wherever the server runs
job = {"image_path": img_url, "instruction": instruction}
response = requests.post(endpoint, json=job)
if response.status_code != 200:
return "Could not finish the task try again later!"
return "Here is the edited image " + endpoint + response.json()["edited_image"]
# these tools should not step on each other's toes
tools = [
Tool(
name="PAL-MATH",
func=PALChain.from_math_prompt(llm).run,
description=(
"A wrapper around calculator. "
"A language model that is really good at solving complex word math problems."
"Input should be a fully worded hard word math problem."
)
),
Tool(
name = "Image Understanding",
func=imun.run,
description=(
"A wrapper around Image Understanding. "
"Useful for when you need to understand what is inside an image (objects, texts, people)."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "OCR Understanding",
func=imun_read.run,
description=(
"A wrapper around OCR Understanding (Optical Character Recognition). "
"Useful after Image Understanding tool has found text or handwriting is present in the image tags."
"This tool can find the actual text, written name, or product name in the image."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Receipt Understanding",
func=imun_receipt.run,
description=(
"A wrapper receipt understanding. "
"Useful after Image Understanding tool has recognized a receipt in the image tags."
"This tool can find the actual receipt text, prices and detailed items."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Business Card Understanding",
func=imun_businesscard.run,
description=(
"A wrapper around business card understanding. "
"Useful after Image Understanding tool has recognized businesscard in the image tags."
"This tool can find the actual business card text, name, address, email, website on the card."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Layout Understanding",
func=imun_layout.run,
description=(
"A wrapper around layout and table understanding. "
"Useful after Image Understanding tool has recognized businesscard in the image tags."
"This tool can find the actual business card text, name, address, email, website on the card."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Celebrity Understanding",
func=imun_celeb.run,
description=(
"A wrapper around celebrity understanding. "
"Useful after Image Understanding tool has recognized people in the image tags that could be celebrities."
"This tool can find the name of celebrities in the image."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
BingSearchRun(api_wrapper=bing),
Tool(
name = "Photo Editing",
func=edit_photo,
description=(
"A wrapper around photo editing. "
"Useful to edit an image with a given instruction."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
]
# chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory)
# chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True)
chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True, max_iterations=4)
print("langchain reloaded")
history = []
history.append(("Show me what you got!", "Hi Human, I am ready to serve!"))
return history, history, chain
def run_chain(chain, inp):
# global chain
output = ""
try:
output = chain.conversation(input=inp, keep_short=ARGS.noIntermediateConv)
# output = chain.run(input=inp)
except AuthenticationError as ae:
output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
print("output", output)
except RateLimitError as rle:
output = "\n\nRateLimitError: " + str(rle)
except ValueError as ve:
output = "\n\nValueError: " + str(ve)
except InvalidRequestError as ire:
output = "\n\nInvalidRequestError: " + str(ire)
except Exception as e:
output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)
return output
class ChatWrapper:
def __init__(self):
self.lock = Lock()
def __call__(
self, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain]
):
"""Execute the chat functionality."""
self.lock.acquire()
try:
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
history = history or []
# If chain is None, that is because no API key was provided.
output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now())
########################
# multi line
outputs = run_chain(chain, inp)
outputs = process_chain_output(outputs)
print (" len(outputs) {}".format(len(outputs)))
for i, output in enumerate(outputs):
if i==0:
history.append((inp, output))
else:
history.append((None, output))
except Exception as e:
raise e
finally:
self.lock.release()
print (history)
return history, history, ""
# upload image
def add_image(state, chain, image):
global IMAGE_COUNT
global ARGS
IMAGE_COUNT = IMAGE_COUNT + 1
state = state or []
# cap_onnx = get_caption_onnx_api(image.name)
# cap_onnx = "The image shows " + cap_onnx
# state = state + [(f"![](/file={image.name})", cap_onnx)]
# : f"Image {N} http://0.0.0.0:7860/file={image.name}"
# Image_N
# wget http://0.0.0.0:7860/file=/tmp/bananabdzk2eqi.jpg
# url_input_for_chain = "Image_{} http://0.0.0.0:7860/file={}".format(IMAGE_COUNT, image.name)
url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, image.name)
# !!!!!! quick HACK to refer to image in this server for image editing pruprose
url_input_for_chain = url_input_for_chain.replace("0.0.0.0", "10.123.124.92")
########################
# multi line
outputs = run_chain(chain, url_input_for_chain)
outputs = process_chain_output(outputs)
print (" len(outputs) {}".format(len(outputs)))
for i, output in enumerate(outputs):
if i==0:
# state.append((f"![](/file={image.name})", output))
state.append(((image.name,), output))
else:
state.append((None, output))
print (state)
return state, state
def replace_with_image_markup(text):
img_url = None
text= text.strip()
url_idx = text.rfind(" ")
img_url = text[url_idx + 1:].strip()
if img_url.endswith((".", "?")):
img_url = img_url[:-1]
# if img_url is not None:
# img_url = f"![](/file={img_url})"
return img_url
def process_chain_output(outputs):
global ARGS
# print("outputs {}".format(outputs))
if isinstance(outputs, str): # single line output
outputs = [outputs]
elif isinstance(outputs, list): # multi line output
if ARGS.noIntermediateConv: # remove the items with assistant in it.
cleanOutputs = []
for output in outputs:
# print("inside loop outputs {}".format(output))
# found an edited image url to embed
img_url = None
# print ("type list: {}".format(output))
if "assistant: here is the edited image " in output.lower():
img_url = replace_with_image_markup(output)
cleanOutputs.append("Assistant: Here is the edited image")
if img_url is not None:
cleanOutputs.append((img_url,))
cleanOutputs.append(output)
# cleanOutputs = cleanOutputs + output+ "."
outputs = cleanOutputs
# make it bold
# outputs = "<b>{}</b>".format(outputs)
return outputs
def init_and_kick_off():
global ARGS
# initalize chatWrapper
chat = ChatWrapper()
# with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block:
# with gr.Blocks(css="#resetbtn {background-color: #4CAF50; color: red;} #chatbot {height: 700px; overflow: auto;}") as block:
with gr.Blocks() as block:
llm_state = gr.State()
history_state = gr.State()
chain_state = gr.State()
reset_btn = gr.Button(value="!!!CLICK to wake up the AI!!!", variant="secondary", elem_id="resetbtn").style(full_width=False)
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot").style(height=620)
with gr.Row():
with gr.Column(scale=0.75):
message = gr.Textbox(label="What's on your mind??",
placeholder="What's the answer to life, the universe, and everything?",
lines=1)
with gr.Column(scale=0.15):
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
with gr.Column(scale=0.10, min_width=0):
btn = gr.UploadButton("📁", file_types=["image"])
# btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
with gr.Row():
with gr.Column(scale=0.90):
gr.HTML("""
<p>This application, developed by Cognitive Service Team Microsoft, demonstrates all cognitive service APIs in a conversational agent
</p>""")
# with gr.Column(scale=0.10):
# reset_btn = gr.Button(value="Initiate Chat", variant="secondary", elem_id="resetbtn").style(full_width=False)
message.submit(chat, inputs=[message, history_state, chain_state],
outputs=[chatbot, history_state, message])
submit.click(chat, inputs=[message, history_state, chain_state],
outputs=[chatbot, history_state, message])
btn.upload(add_image, inputs=[history_state, chain_state, btn], outputs=[history_state, chatbot])
# reset_btn.click(reset_memory, inputs=[history_state], outputs=[chatbot, history_state])
# openai_api_key_textbox.change(set_openai_api_key,
# inputs=[openai_api_key_textbox],
# outputs=[chain_state])
# load the chain
reset_btn.click(load_chain, inputs=[history_state], outputs=[chatbot, history_state, chain_state])
# # load the chain
# load_chain()
# launch the app
block.launch(server_name="0.0.0.0", server_port = ARGS.port)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, required=False, default=7860)
parser.add_argument('--openAIModel', type=str, required=False, default='openAIGPT35')
parser.add_argument('--noIntermediateConv', default=False, action='store_true', help='if this flag is turned on no intermediate conversation should be shown')
global ARGS
ARGS = parser.parse_args()
init_and_kick_off()
# python app.py --port 7860 --openAIModel 'openAIGPT35'
# python app.py --port 7860 --openAIModel 'azureTextDavinci003'
# python app.py --port 7861 --openAIModel 'azureChatGPT'
# python app.py --port 7860 --openAIModel 'azureChatGPT' --noIntermediateConv
# python app.py --port 7862 --openAIModel 'azureGPT35turbo' --noIntermediateConv |