Spaces:
Runtime error
Runtime error
File size: 27,445 Bytes
acc4ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
{
"cells": [
{
"cell_type": "markdown",
"id": "05859721",
"metadata": {},
"source": [
"# Question Answering\n",
"\n",
"This notebook walks through how to use LangChain for question answering over a list of documents. It covers four different types of chains: `stuff`, `map_reduce`, `refine`, `map-rerank`. For a more in depth explanation of what these chain types are, see [here](../combine_docs.md)."
]
},
{
"cell_type": "markdown",
"id": "726f4996",
"metadata": {},
"source": [
"## Prepare Data\n",
"First we prepare the data. For this example we do similarity search over a vector database, but these documents could be fetched in any manner (the point of this notebook to highlight what to do AFTER you fetch the documents)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "17fcbc0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.docstore.document import Document\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "291f0117",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fd9666a9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"docsearch = Chroma.from_documents(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d1eaf6e6",
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a16e3453",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "2f64b7f8",
"metadata": {},
"source": [
"## Quickstart\n",
"If you just want to get started as quickly as possible, this is the recommended way to do it:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "fd9e6190",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The president said that he was honoring Justice Breyer for his service to the country and that he was a Constitutional scholar, Army veteran, and retiring Justice of the United States Supreme Court.'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"stuff\")\n",
"query = \"What did the president say about Justice Breyer\"\n",
"chain.run(input_documents=docs, question=query)"
]
},
{
"cell_type": "markdown",
"id": "eea01309",
"metadata": {},
"source": [
"If you want more control and understanding over what is happening, please see the information below."
]
},
{
"cell_type": "markdown",
"id": "f78787a0",
"metadata": {},
"source": [
"## The `stuff` Chain\n",
"\n",
"This sections shows results of using the `stuff` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "180fd4c1",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"stuff\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "77fdf1aa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' The president said that he was honoring Justice Breyer for his service to the country and that he was a Constitutional scholar, Army veteran, and retiring Justice of the United States Supreme Court.'}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "84794d4c",
"metadata": {},
"source": [
"**Custom Prompts**\n",
"\n",
"You can also use your own prompts with this chain. In this example, we will respond in Italian."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5558c9e0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' Il presidente ha detto che Justice Breyer ha dedicato la sua vita a servire questo paese e ha onorato la sua carriera come giudice della Corte Suprema degli Stati Uniti.'}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n",
"\n",
"{context}\n",
"\n",
"Question: {question}\n",
"Answer in Italian:\"\"\"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template, input_variables=[\"context\", \"question\"]\n",
")\n",
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"stuff\", prompt=PROMPT)\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "91522e29",
"metadata": {},
"source": [
"## The `map_reduce` Chain\n",
"\n",
"This sections shows results of using the `map_reduce` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b0060f51",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fbdb9137",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' The president said, \"Justice Breyer, thank you for your service.\"'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "31478d32",
"metadata": {},
"source": [
"**Intermediate Steps**\n",
"\n",
"We can also return the intermediate steps for `map_reduce` chains, should we want to inspect them. This is done with the `return_map_steps` variable."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "452c8680",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_reduce\", return_map_steps=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "90b47a75",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'intermediate_steps': [' \"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\"',\n",
" ' None',\n",
" ' None',\n",
" ' None'],\n",
" 'output_text': ' The president said, \"Justice Breyer, thank you for your service.\"'}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "93c51102",
"metadata": {},
"source": [
"**Custom Prompts**\n",
"\n",
"You can also use your own prompts with this chain. In this example, we will respond in Italian."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "af03a578",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'intermediate_steps': [\"\\nStasera vorrei onorare qualcuno che ha dedicato la sua vita a servire questo paese: il giustizia Stephen Breyer - un veterano dell'esercito, uno studioso costituzionale e un giustizia in uscita della Corte Suprema degli Stati Uniti. Giustizia Breyer, grazie per il tuo servizio.\",\n",
" '\\nNessun testo pertinente.',\n",
" \"\\nCome ho detto l'anno scorso, soprattutto ai nostri giovani americani transgender, avrò sempre il tuo sostegno come tuo Presidente, in modo che tu possa essere te stesso e raggiungere il tuo potenziale donato da Dio.\",\n",
" '\\nNella mia amministrazione, i guardiani sono stati accolti di nuovo. Stiamo andando dietro ai criminali che hanno rubato miliardi di dollari di aiuti di emergenza destinati alle piccole imprese e a milioni di americani. E stasera, annuncio che il Dipartimento di Giustizia nominerà un procuratore capo per la frode pandemica.'],\n",
" 'output_text': ' Non conosco la risposta alla tua domanda su cosa abbia detto il Presidente riguardo al Giustizia Breyer.'}"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question_prompt_template = \"\"\"Use the following portion of a long document to see if any of the text is relevant to answer the question. \n",
"Return any relevant text translated into italian.\n",
"{context}\n",
"Question: {question}\n",
"Relevant text, if any, in Italian:\"\"\"\n",
"QUESTION_PROMPT = PromptTemplate(\n",
" template=question_prompt_template, input_variables=[\"context\", \"question\"]\n",
")\n",
"\n",
"combine_prompt_template = \"\"\"Given the following extracted parts of a long document and a question, create a final answer italian. \n",
"If you don't know the answer, just say that you don't know. Don't try to make up an answer.\n",
"\n",
"QUESTION: {question}\n",
"=========\n",
"{summaries}\n",
"=========\n",
"Answer in Italian:\"\"\"\n",
"COMBINE_PROMPT = PromptTemplate(\n",
" template=combine_prompt_template, input_variables=[\"summaries\", \"question\"]\n",
")\n",
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_reduce\", return_map_steps=True, question_prompt=QUESTION_PROMPT, combine_prompt=COMBINE_PROMPT)\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "6391b7ab",
"metadata": {},
"source": [
"**Batch Size**\n",
"\n",
"When using the `map_reduce` chain, one thing to keep in mind is the batch size you are using during the map step. If this is too high, it could cause rate limiting errors. You can control this by setting the batch size on the LLM used. Note that this only applies for LLMs with this parameter. Below is an example of doing so:\n",
"\n",
"```python\n",
"llm = OpenAI(batch_size=5, temperature=0)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "6ea50ad0",
"metadata": {},
"source": [
"## The `refine` Chain\n",
"\n",
"This sections shows results of using the `refine` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fb167057",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"refine\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d8b5286e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': '\\n\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country, his legacy of excellence, and his commitment to advancing liberty and justice, as well as for his commitment to protecting the rights of LGBTQ+ Americans and his support for the bipartisan Equality Act. He also mentioned his plan to lower costs to give families a fair shot, lower the deficit, and go after criminals who stole pandemic relief funds. He also announced that the Justice Department will name a chief prosecutor for pandemic fraud.'}"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "f95dfb2e",
"metadata": {},
"source": [
"**Intermediate Steps**\n",
"\n",
"We can also return the intermediate steps for `refine` chains, should we want to inspect them. This is done with the `return_refine_steps` variable."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a5c64200",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"refine\", return_refine_steps=True)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "817546ac",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'intermediate_steps': ['\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country and his legacy of excellence.',\n",
" '\\n\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country, his legacy of excellence, and his commitment to advancing liberty and justice.',\n",
" '\\n\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country, his legacy of excellence, and his commitment to advancing liberty and justice, as well as for his commitment to protecting the rights of LGBTQ+ Americans and his support for the bipartisan Equality Act.',\n",
" '\\n\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country, his legacy of excellence, and his commitment to advancing liberty and justice, as well as for his commitment to protecting the rights of LGBTQ+ Americans and his support for the bipartisan Equality Act. He also mentioned his plan to lower costs to give families a fair shot, lower the deficit, and go after criminals who stole pandemic relief funds. He also announced that the Justice Department will name a chief prosecutor for pandemic fraud.'],\n",
" 'output_text': '\\n\\nThe president said that he wanted to honor Justice Breyer for his dedication to serving the country, his legacy of excellence, and his commitment to advancing liberty and justice, as well as for his commitment to protecting the rights of LGBTQ+ Americans and his support for the bipartisan Equality Act. He also mentioned his plan to lower costs to give families a fair shot, lower the deficit, and go after criminals who stole pandemic relief funds. He also announced that the Justice Department will name a chief prosecutor for pandemic fraud.'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "4f0bcae4",
"metadata": {},
"source": [
"**Custom Prompts**\n",
"\n",
"You can also use your own prompts with this chain. In this example, we will respond in Italian."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "6664bda7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'intermediate_steps': ['\\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera. Ha anche detto che la sua nomina di Circuit Court of Appeals Judge Ketanji Brown Jackson continuerà il suo eccezionale lascito.',\n",
" \"\\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera. Ha anche detto che la sua nomina di Circuit Court of Appeals Judge Ketanji Brown Jackson continuerà il suo eccezionale lascito. Ha sottolineato che la sua esperienza come avvocato di alto livello in pratica privata, come ex difensore federale pubblico e come membro di una famiglia di educatori e agenti di polizia, la rende una costruttrice di consenso. Ha anche sottolineato che, dalla sua nomina, ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani.\",\n",
" \"\\n\\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera. Ha anche detto che la sua nomina di Circuit Court of Appeals Judge Ketanji Brown Jackson continuerà il suo eccezionale lascito. Ha sottolineato che la sua esperienza come avvocato di alto livello in pratica privata, come ex difensore federale pubblico e come membro di una famiglia di educatori e agenti di polizia, la rende una costruttrice di consenso. Ha anche sottolineato che, dalla sua nomina, ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Ha inoltre sottolineato che la nomina di Justice Breyer è un passo importante verso l'uguaglianza per tutti gli americani, in partic\",\n",
" \"\\n\\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera. Ha anche detto che la sua nomina di Circuit Court of Appeals Judge Ketanji Brown Jackson continuerà il suo eccezionale lascito. Ha sottolineato che la sua esperienza come avvocato di alto livello in pratica privata, come ex difensore federale pubblico e come membro di una famiglia di educatori e agenti di polizia, la rende una costruttrice di consenso. Ha anche sottolineato che, dalla sua nomina, ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Ha inoltre sottolineato che la nomina di Justice Breyer è un passo importante verso l'uguaglianza per tutti gli americani, in partic\"],\n",
" 'output_text': \"\\n\\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera. Ha anche detto che la sua nomina di Circuit Court of Appeals Judge Ketanji Brown Jackson continuerà il suo eccezionale lascito. Ha sottolineato che la sua esperienza come avvocato di alto livello in pratica privata, come ex difensore federale pubblico e come membro di una famiglia di educatori e agenti di polizia, la rende una costruttrice di consenso. Ha anche sottolineato che, dalla sua nomina, ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Ha inoltre sottolineato che la nomina di Justice Breyer è un passo importante verso l'uguaglianza per tutti gli americani, in partic\"}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"refine_prompt_template = (\n",
" \"The original question is as follows: {question}\\n\"\n",
" \"We have provided an existing answer: {existing_answer}\\n\"\n",
" \"We have the opportunity to refine the existing answer\"\n",
" \"(only if needed) with some more context below.\\n\"\n",
" \"------------\\n\"\n",
" \"{context_str}\\n\"\n",
" \"------------\\n\"\n",
" \"Given the new context, refine the original answer to better \"\n",
" \"answer the question. \"\n",
" \"If the context isn't useful, return the original answer. Reply in Italian.\"\n",
")\n",
"refine_prompt = PromptTemplate(\n",
" input_variables=[\"question\", \"existing_answer\", \"context_str\"],\n",
" template=refine_prompt_template,\n",
")\n",
"\n",
"\n",
"initial_qa_template = (\n",
" \"Context information is below. \\n\"\n",
" \"---------------------\\n\"\n",
" \"{context_str}\"\n",
" \"\\n---------------------\\n\"\n",
" \"Given the context information and not prior knowledge, \"\n",
" \"answer the question: {question}\\nYour answer should be in Italian.\\n\"\n",
")\n",
"initial_qa_prompt = PromptTemplate(\n",
" input_variables=[\"context_str\", \"question\"], template=initial_qa_template\n",
")\n",
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"refine\", return_refine_steps=True,\n",
" question_prompt=initial_qa_prompt, refine_prompt=refine_prompt)\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "521a77cb",
"metadata": {},
"source": [
"## The `map-rerank` Chain\n",
"\n",
"This sections shows results of using the `map-rerank` Chain to do question answering with sources."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e2bfe203",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_rerank\", return_intermediate_steps=True)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5c28880c",
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"results = chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "80ac2db3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The president thanked Justice Breyer for his service and honored him for dedicating his life to serving the country. '"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results[\"output_text\"]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "b428fcb9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'answer': ' The president thanked Justice Breyer for his service and honored him for dedicating his life to serving the country. ',\n",
" 'score': '100'},\n",
" {'answer': \" The president said that Justice Breyer is a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that since she's been nominated, she's received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans, and that she is a consensus builder.\",\n",
" 'score': '100'},\n",
" {'answer': ' The president did not mention Justice Breyer in this context.',\n",
" 'score': '0'},\n",
" {'answer': ' The president did not mention Justice Breyer in the given context. ',\n",
" 'score': '0'}]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results[\"intermediate_steps\"]"
]
},
{
"cell_type": "markdown",
"id": "5e47a818",
"metadata": {},
"source": [
"**Custom Prompts**\n",
"\n",
"You can also use your own prompts with this chain. In this example, we will respond in Italian."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "41b83cd8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'intermediate_steps': [{'answer': ' Il presidente ha detto che Justice Breyer ha dedicato la sua vita a servire questo paese e ha onorato la sua carriera.',\n",
" 'score': '100'},\n",
" {'answer': ' Il presidente non ha detto nulla sulla Giustizia Breyer.',\n",
" 'score': '100'},\n",
" {'answer': ' Non so.', 'score': '0'},\n",
" {'answer': ' Il presidente non ha detto nulla sulla giustizia Breyer.',\n",
" 'score': '100'}],\n",
" 'output_text': ' Il presidente ha detto che Justice Breyer ha dedicato la sua vita a servire questo paese e ha onorato la sua carriera.'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts.base import RegexParser\n",
"\n",
"output_parser = RegexParser(\n",
" regex=r\"(.*?)\\nScore: (.*)\",\n",
" output_keys=[\"answer\", \"score\"],\n",
")\n",
"\n",
"prompt_template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n",
"\n",
"In addition to giving an answer, also return a score of how fully it answered the user's question. This should be in the following format:\n",
"\n",
"Question: [question here]\n",
"Helpful Answer In Italian: [answer here]\n",
"Score: [score between 0 and 100]\n",
"\n",
"Begin!\n",
"\n",
"Context:\n",
"---------\n",
"{context}\n",
"---------\n",
"Question: {question}\n",
"Helpful Answer In Italian:\"\"\"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template,\n",
" input_variables=[\"context\", \"question\"],\n",
" output_parser=output_parser,\n",
")\n",
"\n",
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_rerank\", return_intermediate_steps=True, prompt=PROMPT)\n",
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0f0bbdf",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|