File size: 2,983 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# DeepInfra LLM Example\n",
    "This notebook goes over how to use Langchain with [DeepInfra](https://deepinfra.com)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from langchain.llms import DeepInfra\n",
    "from langchain import PromptTemplate, LLMChain"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Set the Environment API Key\n",
    "Make sure to get your API key from DeepInfra. You are given a 1 hour free of serverless GPU compute to test different models.\n",
    "You can print your token with `deepctl auth token`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ[\"DEEPINFRA_API_TOKEN\"] = \"YOUR_KEY_HERE\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create the DeepInfra instance\n",
    "Make sure to deploy your model first via `deepctl deploy create -m google/flat-t5-xl` (for example)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = DeepInfra(model_id=\"DEPLOYED MODEL ID\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create a Prompt Template\n",
    "We will create a prompt template for Question and Answer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "template = \"\"\"Question: {question}\n",
    "\n",
    "Answer: Let's think step by step.\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Initiate the LLMChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(prompt=prompt, llm=llm)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run the LLMChain\n",
    "Provide a question and run the LLMChain."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question = \"What NFL team won the Super Bowl in 2015?\"\n",
    "\n",
    "llm_chain.run(question)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.12 ('palm')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.9.12"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}