File size: 4,020 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6eaf7e66-f49c-42da-8d11-22ea13bef718",
   "metadata": {},
   "source": [
    "# Streaming with LLMs\n",
    "\n",
    "LangChain provides streaming support for LLMs. Currently, we only support streaming for the `OpenAI` LLM implementation, but streaming support for other LLM implementations is on the roadmap. To utilize streaming, use a [`CallbackHandler`](https://github.com/hwchase17/langchain/blob/master/langchain/callbacks/base.py) that implements `on_llm_new_token`. In this example, we are using [`StreamingStdOutCallbackHandler`]()."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "4ac0ff54-540a-4f2b-8d9a-b590fec7fe07",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "Verse 1\n",
      "I'm sippin' on sparkling water,\n",
      "It's so refreshing and light,\n",
      "It's the perfect way to quench my thirst,\n",
      "On a hot summer night.\n",
      "\n",
      "Chorus\n",
      "Sparkling water, sparkling water,\n",
      "It's the best way to stay hydrated,\n",
      "It's so refreshing and light,\n",
      "It's the perfect way to stay alive.\n",
      "\n",
      "Verse 2\n",
      "I'm sippin' on sparkling water,\n",
      "It's so bubbly and bright,\n",
      "It's the perfect way to cool me down,\n",
      "On a hot summer night.\n",
      "\n",
      "Chorus\n",
      "Sparkling water, sparkling water,\n",
      "It's the best way to stay hydrated,\n",
      "It's so refreshing and light,\n",
      "It's the perfect way to stay alive.\n",
      "\n",
      "Verse 3\n",
      "I'm sippin' on sparkling water,\n",
      "It's so crisp and clean,\n",
      "It's the perfect way to keep me going,\n",
      "On a hot summer day.\n",
      "\n",
      "Chorus\n",
      "Sparkling water, sparkling water,\n",
      "It's the best way to stay hydrated,\n",
      "It's so refreshing and light,\n",
      "It's the perfect way to stay alive."
     ]
    }
   ],
   "source": [
    "from langchain.llms import OpenAI\n",
    "from langchain.callbacks.base import CallbackManager\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "\n",
    "\n",
    "llm = OpenAI(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0)\n",
    "resp = llm(\"Write me a song about sparkling water.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "61fb6de7-c6c8-48d0-a48e-1204c027a23c",
   "metadata": {
    "tags": []
   },
   "source": [
    "We still have access to the end `LLMResult` if using `generate`. However, `token_usage` is not currently supported for streaming."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "a35373f1-9ee6-4753-a343-5aee749b8527",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "Q: What did the fish say when it hit the wall?\n",
      "A: Dam!"
     ]
    },
    {
     "data": {
      "text/plain": [
       "LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}})"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.generate([\"Tell me a joke.\"])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}