File size: 7,956 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "920a3c1a",
   "metadata": {},
   "source": [
    "# Model Comparison\n",
    "\n",
    "Constructing your language model application will likely involved choosing between many different options of prompts, models, and even chains to use. When doing so, you will want to compare these different options on different inputs in an easy, flexible, and intuitive way. \n",
    "\n",
    "LangChain provides the concept of a ModelLaboratory to test out and try different models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ab9e95ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, PromptTemplate\n",
    "from langchain.model_laboratory import ModelLaboratory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "32cb94e6",
   "metadata": {},
   "outputs": [],
   "source": [
    "llms = [\n",
    "    OpenAI(temperature=0), \n",
    "    Cohere(model=\"command-xlarge-20221108\", max_tokens=20, temperature=0), \n",
    "    HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1})\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "14cde09d",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_lab = ModelLaboratory.from_llms(llms)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f186c741",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1mInput:\u001b[0m\n",
      "What color is a flamingo?\n",
      "\n",
      "\u001b[1mOpenAI\u001b[0m\n",
      "Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
      "\u001b[36;1m\u001b[1;3m\n",
      "\n",
      "Flamingos are pink.\u001b[0m\n",
      "\n",
      "\u001b[1mCohere\u001b[0m\n",
      "Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
      "\u001b[33;1m\u001b[1;3m\n",
      "\n",
      "Pink\u001b[0m\n",
      "\n",
      "\u001b[1mHuggingFaceHub\u001b[0m\n",
      "Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
      "\u001b[38;5;200m\u001b[1;3mpink\u001b[0m\n",
      "\n"
     ]
    }
   ],
   "source": [
    "model_lab.compare(\"What color is a flamingo?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "248b652a",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = PromptTemplate(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
    "model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f64377ac",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1mInput:\u001b[0m\n",
      "New York\n",
      "\n",
      "\u001b[1mOpenAI\u001b[0m\n",
      "Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
      "\u001b[36;1m\u001b[1;3m\n",
      "\n",
      "The capital of New York is Albany.\u001b[0m\n",
      "\n",
      "\u001b[1mCohere\u001b[0m\n",
      "Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
      "\u001b[33;1m\u001b[1;3m\n",
      "\n",
      "The capital of New York is Albany.\u001b[0m\n",
      "\n",
      "\u001b[1mHuggingFaceHub\u001b[0m\n",
      "Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
      "\u001b[38;5;200m\u001b[1;3mst john s\u001b[0m\n",
      "\n"
     ]
    }
   ],
   "source": [
    "model_lab_with_prompt.compare(\"New York\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "54336dbf",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import SelfAskWithSearchChain, SerpAPIWrapper\n",
    "\n",
    "open_ai_llm = OpenAI(temperature=0)\n",
    "search = SerpAPIWrapper()\n",
    "self_ask_with_search_openai = SelfAskWithSearchChain(llm=open_ai_llm, search_chain=search, verbose=True)\n",
    "\n",
    "cohere_llm = Cohere(temperature=0, model=\"command-xlarge-20221108\")\n",
    "search = SerpAPIWrapper()\n",
    "self_ask_with_search_cohere = SelfAskWithSearchChain(llm=cohere_llm, search_chain=search, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "6a50a9f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "chains = [self_ask_with_search_openai, self_ask_with_search_cohere]\n",
    "names = [str(open_ai_llm), str(cohere_llm)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d3549e99",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_lab = ModelLaboratory(chains, names=names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "362f7f57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1mInput:\u001b[0m\n",
      "What is the hometown of the reigning men's U.S. Open champion?\n",
      "\n",
      "\u001b[1mOpenAI\u001b[0m\n",
      "Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new chain...\u001b[0m\n",
      "What is the hometown of the reigning men's U.S. Open champion?\n",
      "Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
      "Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
      "Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
      "Follow up: Where is Carlos Alcaraz from?\u001b[0m\n",
      "Intermediate answer: \u001b[33;1m\u001b[1;3mEl Palmar, Spain.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
      "So the final answer is: El Palmar, Spain\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\u001b[36;1m\u001b[1;3m\n",
      "So the final answer is: El Palmar, Spain\u001b[0m\n",
      "\n",
      "\u001b[1mCohere\u001b[0m\n",
      "Params: {'model': 'command-xlarge-20221108', 'max_tokens': 256, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new chain...\u001b[0m\n",
      "What is the hometown of the reigning men's U.S. Open champion?\n",
      "Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
      "Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
      "Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
      "So the final answer is:\n",
      "\n",
      "Carlos Alcaraz\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\u001b[33;1m\u001b[1;3m\n",
      "So the final answer is:\n",
      "\n",
      "Carlos Alcaraz\u001b[0m\n",
      "\n"
     ]
    }
   ],
   "source": [
    "model_lab.compare(\"What is the hometown of the reigning men's U.S. Open champion?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "94159131",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}