JJteam
upgrading to GPT4 MM-ReAct
7ce3696
raw
history blame
23 kB
import re
import io
import os
from typing import Optional, Tuple
import datetime
import sys
import gradio as gr
import requests
import json
from threading import Lock
from langchain import ConversationChain, LLMChain
from langchain.agents import load_tools, initialize_agent, Tool
from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import PALChain
from langchain.llms import AzureOpenAI
from langchain.utilities import ImunAPIWrapper, ImunMultiAPIWrapper
from langchain.utils import get_url_path
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError
import argparse
import logging
from opencensus.ext.azure.log_exporter import AzureLogHandler
import uuid
logger = None
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
BUG_FOUND_MSG = "Some Functionalities not supported yet. Please refresh and hit 'Click to wake up MM-REACT'"
AUTH_ERR_MSG = "OpenAI key needed"
REFRESH_MSG = "Please refresh and hit 'Click to wake up MM-REACT'"
MAX_TOKENS = 512
def get_logger():
global logger
if logger is None:
logger = logging.getLogger(__name__)
logger.addHandler(AzureLogHandler())
return logger
# load chain
def load_chain(history, log_state):
global ARGS
if ARGS.openAIModel == 'openAIGPT35':
# openAI GPT 3.5
llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureChatGPT':
# for Azure OpenAI ChatGPT
llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureGPT35turbo':
# for Azure OpenAI gpt3.5 turbo
llm = AzureOpenAI(deployment_name="gpt-35-turbo-version-0301", model_name="gpt-35-turbo (version 0301)", temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureTextDavinci003':
# for Azure OpenAI text davinci
llm = AzureOpenAI(deployment_name="text-davinci-003", model_name="text-davinci-003", temperature=0, max_tokens=MAX_TOKENS)
elif ARGS.openAIModel == 'azureGPT4':
# for Azure GPT4 private preview
llm = AzureOpenAI(deployment_name="gpt-4-32k-0314", temperature=0, chat_completion=True, max_tokens=MAX_TOKENS, openai_api_version="2023-03-15-preview")
memory = ConversationBufferMemory(memory_key="chat_history")
#############################
# loading all tools
imun_dense = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_URL2"),
params=os.environ.get("IMUN_PARAMS2"),
imun_subscription_key=os.environ.get("IMUN_SUBSCRIPTION_KEY2"))
imun = ImunAPIWrapper()
imun = ImunMultiAPIWrapper(imuns=[imun, imun_dense])
imun_celeb = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_CELEB_URL"),
params="")
imun_read = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_OCR_READ_URL"),
params=os.environ.get("IMUN_OCR_PARAMS"),
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_receipt = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_OCR_RECEIPT_URL"),
params=os.environ.get("IMUN_OCR_PARAMS"),
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_businesscard = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_OCR_BC_URL"),
params=os.environ.get("IMUN_OCR_PARAMS"),
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_layout = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_OCR_LAYOUT_URL"),
params=os.environ.get("IMUN_OCR_PARAMS"),
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
imun_invoice = ImunAPIWrapper(
imun_url=os.environ.get("IMUN_OCR_INVOICE_URL"),
params=os.environ.get("IMUN_OCR_PARAMS"),
imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY"))
bing = BingSearchAPIWrapper(k=2)
def edit_photo(query: str) -> str:
endpoint = os.environ.get("PHOTO_EDIT_ENDPOINT_URL")
query = query.strip()
url_idx, img_url = get_url_path(query)
if not img_url.startswith(("http://", "https://")):
return "Invalid image URL"
img_url = img_url.replace("0.0.0.0", os.environ.get("PHOTO_EDIT_ENDPOINT_URL_SHORT"))
instruction = query[:url_idx]
# This should be some internal IP to wherever the server runs
job = {"image_path": img_url, "instruction": instruction}
response = requests.post(endpoint, json=job)
if response.status_code != 200:
return "Could not finish the task try again later!"
return "Here is the edited image " + endpoint + response.json()["edited_image"]
# these tools should not step on each other's toes
tools = [
Tool(
name="PAL-MATH",
func=PALChain.from_math_prompt(llm).run,
description=(
"A wrapper around calculator. "
"A language model that is really good at solving complex word math problems."
"Input should be a fully worded hard word math problem."
)
),
Tool(
name = "Image Understanding",
func=imun.run,
description=(
"A wrapper around Image Understanding. "
"Useful for when you need to understand what is inside an image (objects, texts, people)."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "OCR Understanding",
func=imun_read.run,
description=(
"A wrapper around OCR Understanding (Optical Character Recognition). "
"Useful after Image Understanding tool has found text or handwriting is present in the image tags."
"This tool can find the actual text, written name, or product name in the image."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Receipt Understanding",
func=imun_receipt.run,
description=(
"A wrapper receipt understanding. "
"Useful after Image Understanding tool has recognized a receipt in the image tags."
"This tool can find the actual receipt text, prices and detailed items."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Business Card Understanding",
func=imun_businesscard.run,
description=(
"A wrapper around business card understanding. "
"Useful after Image Understanding tool has recognized businesscard in the image tags."
"This tool can find the actual business card text, name, address, email, website on the card."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Layout Understanding",
func=imun_layout.run,
description=(
"A wrapper around layout and table understanding. "
"Useful after Image Understanding tool has recognized businesscard in the image tags."
"This tool can find the actual business card text, name, address, email, website on the card."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Invoice Understanding",
func=imun_invoice.run,
description=(
"A wrapper around invoice understanding. "
"Useful after Image Understanding tool has recognized businesscard in the image tags."
"This tool can find the actual business card text, name, address, email, website on the card."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
Tool(
name = "Celebrity Understanding",
func=imun_celeb.run,
description=(
"A wrapper around celebrity understanding. "
"Useful after Image Understanding tool has recognized people in the image tags that could be celebrities."
"This tool can find the name of celebrities in the image."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
BingSearchRun(api_wrapper=bing),
Tool(
name = "Photo Editing",
func=edit_photo,
description=(
"A wrapper around photo editing. "
"Useful to edit an image with a given instruction."
"Input should be an image url, or path to an image file (e.g. .jpg, .png)."
)
),
]
chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True, max_iterations=4)
log_state = log_state or ""
print ("log_state {}".format(log_state))
log_state = str(uuid.uuid1())
print("langchain reloaded")
# eproperties = {'custom_dimensions': {'key_1': 'value_1', 'key_2': 'value_2'}}
properties = {'custom_dimensions': {'session': log_state}}
get_logger().warning("langchain reloaded", extra=properties)
history = []
history.append(("Show me what you got!", "Hi Human, Please upload an image to get started!"))
return history, history, chain, log_state, \
gr.Textbox.update(visible=True), \
gr.Button.update(visible=True), \
gr.UploadButton.update(visible=True), \
gr.Row.update(visible=True), \
gr.HTML.update(visible=True), \
gr.Button.update(variant="secondary")
# executes input typed by human
def run_chain(chain, inp):
# global chain
output = ""
try:
output = chain.conversation(input=inp, keep_short=ARGS.noIntermediateConv)
# output = chain.run(input=inp)
except AuthenticationError as ae:
output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
print("output", output)
except RateLimitError as rle:
output = "\n\nRateLimitError: " + str(rle)
except ValueError as ve:
output = "\n\nValueError: " + str(ve)
except InvalidRequestError as ire:
output = "\n\nInvalidRequestError: " + str(ire)
except Exception as e:
output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)
return output
# simple chat function wrapper
class ChatWrapper:
def __init__(self):
self.lock = Lock()
def __call__(
self, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain], log_state
):
"""Execute the chat functionality."""
self.lock.acquire()
try:
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
properties = {'custom_dimensions': {'session': log_state}}
get_logger().warning("inp: " + inp, extra=properties)
history = history or []
# If chain is None, that is because no API key was provided.
output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now())
########################
# multi line
outputs = run_chain(chain, inp)
outputs = process_chain_output(outputs)
print (" len(outputs) {}".format(len(outputs)))
for i, output in enumerate(outputs):
if i==0:
history.append((inp, output))
else:
history.append((None, output))
except Exception as e:
raise e
finally:
self.lock.release()
print (history)
properties = {'custom_dimensions': {'session': log_state}}
if outputs is None:
outputs = ""
get_logger().warning(str(json.dumps(outputs)), extra=properties)
return history, history, ""
def add_image_with_path(state, chain, imagepath, log_state):
global ARGS
state = state or []
url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, imagepath)
outputs = run_chain(chain, url_input_for_chain)
########################
# multi line response handling
outputs = process_chain_output(outputs)
for i, output in enumerate(outputs):
if i==0:
# state.append((f"![](/file={imagepath})", output))
state.append(((imagepath,), output))
else:
state.append((None, output))
print (state)
properties = {'custom_dimensions': {'session': log_state}}
get_logger().warning("url_input_for_chain: " + url_input_for_chain, extra=properties)
if outputs is None:
outputs = ""
get_logger().warning(str(json.dumps(outputs)), extra=properties)
return state, state
# upload image
def add_image(state, chain, image, log_state):
global ARGS
state = state or []
# handling spaces in image path
imagepath = image.name.replace(" ", "%20")
url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, imagepath)
outputs = run_chain(chain, url_input_for_chain)
########################
# multi line response handling
outputs = process_chain_output(outputs)
for i, output in enumerate(outputs):
if i==0:
state.append(((imagepath,), output))
else:
state.append((None, output))
print (state)
properties = {'custom_dimensions': {'session': log_state}}
get_logger().warning("url_input_for_chain: " + url_input_for_chain, extra=properties)
if outputs is None:
outputs = ""
get_logger().warning(str(json.dumps(outputs)), extra=properties)
return state, state
# extract image url from response and process differently
def replace_with_image_markup(text):
img_url = None
text= text.strip()
url_idx = text.rfind(" ")
img_url = text[url_idx + 1:].strip()
if img_url.endswith((".", "?")):
img_url = img_url[:-1]
# if img_url is not None:
# img_url = f"![](/file={img_url})"
return img_url
# multi line response handling
def process_chain_output(outputs):
global ARGS
EMPTY_AI_REPLY = "AI:"
# print("outputs {}".format(outputs))
if isinstance(outputs, str): # single line output
if outputs.strip() == EMPTY_AI_REPLY:
outputs = REFRESH_MSG
outputs = [outputs]
elif isinstance(outputs, list): # multi line output
if ARGS.noIntermediateConv: # remove the items with assistant in it.
cleanOutputs = []
for output in outputs:
if output.strip() == EMPTY_AI_REPLY:
output = REFRESH_MSG
# found an edited image url to embed
img_url = None
# print ("type list: {}".format(output))
if "assistant: here is the edited image " in output.lower():
img_url = replace_with_image_markup(output)
cleanOutputs.append("Assistant: Here is the edited image")
if img_url is not None:
cleanOutputs.append((img_url,))
else:
cleanOutputs.append(output)
# cleanOutputs = cleanOutputs + output+ "."
outputs = cleanOutputs
return outputs
def init_and_kick_off():
global ARGS
# initalize chatWrapper
chat = ChatWrapper()
exampleTitle = """<h3>Examples to start conversation..</h3>"""
comingSoon = """<center><b><p style="color:Red;">MM-REACT: April 20th version with GPT4 and image understanding capabilities</p></b></center>"""
detailLinks = """
<center>
<a href="https://multimodal-react.github.io/"> MM-ReAct Website</a>
·
<a href="https://arxiv.org/abs/2303.11381">MM-ReAct Paper</a>
·
<a href="https://github.com/microsoft/MM-REACT">MM-ReAct Code</a>
</center>
"""
with gr.Blocks(css="#tryButton {width: 120px;}") as block:
llm_state = gr.State()
history_state = gr.State()
chain_state = gr.State()
log_state = gr.State()
reset_btn = gr.Button(value="!!!CLICK to wake up MM-REACT!!!", variant="primary", elem_id="resetbtn").style(full_width=True)
gr.HTML(detailLinks)
gr.HTML(comingSoon)
example_image_size = 90
col_min_width = 80
button_variant = "primary"
with gr.Row():
with gr.Column(scale=1.0, min_width=100):
chatbot = gr.Chatbot(elem_id="chatbot", label="MM-REACT Bot").style(height=620)
with gr.Column(scale=0.20, min_width=200, visible=False) as exampleCol:
with gr.Row():
grExampleTitle = gr.HTML(exampleTitle, visible=False)
with gr.Row():
with gr.Column(scale=0.50, min_width=col_min_width):
example3Image = gr.Image("images/receipt.png", interactive=False).style(height=example_image_size, width=example_image_size)
with gr.Column(scale=0.50, min_width=col_min_width):
example3ImageButton = gr.Button(elem_id="tryButton", value="Try it!", variant=button_variant).style(full_width=True)
# dummy text field to hold the path
example3ImagePath = gr.Text("images/receipt.png", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=0.50, min_width=col_min_width):
example1Image = gr.Image("images/money.png", interactive=False).style(height=example_image_size, width=example_image_size)
with gr.Column(scale=0.50, min_width=col_min_width):
example1ImageButton = gr.Button(elem_id="tryButton", value="Try it!", variant=button_variant).style(full_width=True)
# dummy text field to hold the path
example1ImagePath = gr.Text("images/money.png", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=0.50, min_width=col_min_width):
example2Image = gr.Image("images/cartoon.png", interactive=False).style(height=example_image_size, width=example_image_size)
with gr.Column(scale=0.50, min_width=col_min_width):
example2ImageButton = gr.Button(elem_id="tryButton", value="Try it!", variant=button_variant).style(full_width=True)
# dummy text field to hold the path
example2ImagePath = gr.Text("images/cartoon.png", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=0.50, min_width=col_min_width):
example4Image = gr.Image("images/product.png", interactive=False).style(height=example_image_size, width=example_image_size)
with gr.Column(scale=0.50, min_width=col_min_width):
example4ImageButton = gr.Button(elem_id="tryButton", value="Try it!", variant=button_variant).style(full_width=True)
# dummy text field to hold the path
example4ImagePath = gr.Text("images/product.png", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=0.50, min_width=col_min_width):
example5Image = gr.Image("images/celebrity.png", interactive=False).style(height=example_image_size, width=example_image_size)
with gr.Column(scale=0.50, min_width=col_min_width):
example5ImageButton = gr.Button(elem_id="tryButton", value="Try it!", variant=button_variant).style(full_width=True)
# dummy text field to hold the path
example5ImagePath = gr.Text("images/celebrity.png", interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=0.75):
message = gr.Textbox(label="Upload a pic and ask!",
placeholder="Type your question about the uploaded image",
lines=1, visible=False)
with gr.Column(scale=0.15):
submit = gr.Button(value="Send", variant="secondary", visible=False).style(full_width=True)
with gr.Column(scale=0.10, min_width=0):
btn = gr.UploadButton("🖼️", file_types=["image"], visible=False).style(full_width=True)
message.submit(chat, inputs=[message, history_state, chain_state, log_state], outputs=[chatbot, history_state, message])
submit.click(chat, inputs=[message, history_state, chain_state, log_state], outputs=[chatbot, history_state, message])
btn.upload(add_image, inputs=[history_state, chain_state, btn, log_state], outputs=[history_state, chatbot])
# load the chain
reset_btn.click(load_chain, inputs=[history_state, log_state], outputs=[chatbot, history_state, chain_state, log_state, message, submit, btn, exampleCol, grExampleTitle, reset_btn])
# setup listener click for the examples
example1ImageButton.click(add_image_with_path, inputs=[history_state, chain_state, example1ImagePath, log_state], outputs=[history_state, chatbot])
example2ImageButton.click(add_image_with_path, inputs=[history_state, chain_state, example2ImagePath, log_state], outputs=[history_state, chatbot])
example3ImageButton.click(add_image_with_path, inputs=[history_state, chain_state, example3ImagePath, log_state], outputs=[history_state, chatbot])
example4ImageButton.click(add_image_with_path, inputs=[history_state, chain_state, example4ImagePath, log_state], outputs=[history_state, chatbot])
example5ImageButton.click(add_image_with_path, inputs=[history_state, chain_state, example5ImagePath, log_state], outputs=[history_state, chatbot])
# launch the app
block.launch(server_name="0.0.0.0", server_port = ARGS.port)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, required=False, default=7860)
parser.add_argument('--openAIModel', type=str, required=False, default='azureGPT4')
parser.add_argument('--noIntermediateConv', default=True, action='store_true', help='if this flag is turned on no intermediate conversation should be shown')
global ARGS
ARGS = parser.parse_args()
init_and_kick_off()