Spaces:
Runtime error
Runtime error
# example call script | |
# https://dev.azure.com/visionbio/objectdetection/_git/objectdetection?path=/verify/langimg.py&version=GBehazar/langchain&_a=contents | |
import re | |
import io | |
import os | |
import ssl | |
from typing import Optional, Tuple | |
import datetime | |
import sys | |
import gradio as gr | |
import requests | |
import json | |
from threading import Lock | |
from langchain import ConversationChain, LLMChain | |
from langchain.agents import load_tools, initialize_agent, Tool | |
from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.llms import OpenAI | |
from langchain.chains import PALChain | |
from langchain.llms import AzureOpenAI | |
from langchain.utilities import ImunAPIWrapper, ImunMultiAPIWrapper | |
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError | |
import argparse | |
# header_key = os.environ["CVFIAHMED_KEY"] | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
TOOLS_LIST = ['pal-math', 'imun'] #'google-search','news-api','tmdb-api','open-meteo-api' | |
TOOLS_DEFAULT_LIST = ['pal-math', 'imun'] | |
BUG_FOUND_MSG = "Congratulations, you've found a bug in this application!" | |
AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. " | |
MAX_TOKENS = 512 | |
############ GLOBAL CHAIN ########### | |
# chain = None | |
# memory = None | |
##################################### | |
############ GLOBAL IMAGE_COUNT ##### | |
IMAGE_COUNT=0 | |
##################################### | |
############## ARGS ################# | |
AGRS = None | |
##################################### | |
# Temporarily address Wolfram Alpha SSL certificate issue | |
ssl._create_default_https_context = ssl._create_unverified_context | |
def get_caption_onnx_api(imgf): | |
headers = { | |
'Content-Type': 'application/octet-stream', | |
'Ocp-Apim-Subscription-Key': header_key, | |
} | |
params = { | |
'features': 'description', | |
'model-version': 'latest', | |
'language': 'en', | |
'descriptionExclude': 'Celebrities,Landmarks', | |
} | |
with open(imgf, 'rb') as f: | |
data = f.read() | |
response = requests.post('https://cvfiahmed.cognitiveservices.azure.com/vision/v2022-07-31-preview/operations/imageanalysis:analyze', params=params, headers=headers, data=data) | |
return json.loads(response.content)['descriptionResult']['values'][0]['text'] | |
def reset_memory(history): | |
# global memory | |
# memory.clear() | |
print ("clearning memory, loading langchain...") | |
load_chain() | |
history = [] | |
return history, history | |
def load_chain(history): | |
global ARGS | |
# global chain | |
# global memory | |
# memory = None | |
if ARGS.openAIModel == 'openAIGPT35': | |
# openAI GPT 3.5 | |
llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS) | |
elif ARGS.openAIModel == 'azureChatGPT': | |
# for Azure OpenAI ChatGPT | |
# Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1 | |
# llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=1, top_p=0.9, max_tokens=MAX_TOKENS) | |
llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=0, max_tokens=MAX_TOKENS) | |
elif ARGS.openAIModel == 'azureGPT35turbo': | |
llm = AzureOpenAI(deployment_name="gpt-35-turbo-version-0301", model_name="gpt-35-turbo (version 0301)", temperature=0, max_tokens=MAX_TOKENS) | |
elif ARGS.openAIModel == 'azureTextDavinci003': | |
# for Azure OpenAI ChatGPT | |
# Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1 | |
llm = AzureOpenAI(deployment_name="text-davinci-003", model_name="text-davinci-003", temperature=0, max_tokens=MAX_TOKENS) | |
# tool_names = TOOLS_DEFAULT_LIST | |
# tools = load_tools(tool_names, llm=llm) | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
############################# | |
# loading tools | |
imun_dense = ImunAPIWrapper( | |
imun_url="https://ehazarwestus.cognitiveservices.azure.com/computervision/imageanalysis:analyze", | |
params="api-version=2023-02-01-preview&model-version=latest&features=denseCaptions", | |
imun_subscription_key=os.environ["IMUN_SUBSCRIPTION_KEY2"]) | |
imun = ImunAPIWrapper() | |
imun = ImunMultiAPIWrapper(imuns=[imun, imun_dense]) | |
imun_celeb = ImunAPIWrapper( | |
imun_url="https://cvfiahmed.cognitiveservices.azure.com/vision/v3.2/models/celebrities/analyze", | |
params="") | |
imun_read = ImunAPIWrapper( | |
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-read:analyze", | |
params="api-version=2022-08-31", | |
imun_subscription_key=os.environ["IMUN_OCR_SUBSCRIPTION_KEY"]) | |
imun_receipt = ImunAPIWrapper( | |
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-receipt:analyze", | |
params="api-version=2022-08-31", | |
imun_subscription_key=os.environ["IMUN_OCR_SUBSCRIPTION_KEY"]) | |
imun_businesscard = ImunAPIWrapper( | |
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-businessCard:analyze", | |
params="api-version=2022-08-31", | |
imun_subscription_key=os.environ["IMUN_OCR_SUBSCRIPTION_KEY"]) | |
imun_layout = ImunAPIWrapper( | |
imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-layout:analyze", | |
params="api-version=2022-08-31", | |
imun_subscription_key=os.environ["IMUN_OCR_SUBSCRIPTION_KEY"]) | |
bing = BingSearchAPIWrapper(k=2) | |
def edit_photo(query: str) -> str: | |
endpoint = "http://10.123.124.92:7863/" | |
query = query.strip() | |
url_idx = query.rfind(" ") | |
img_url = query[url_idx + 1:].strip() | |
if img_url.endswith((".", "?")): | |
img_url = img_url[:-1] | |
if not img_url.startswith(("http://", "https://")): | |
return "Invalid image URL" | |
img_url = img_url.replace("0.0.0.0", "10.123.124.92") | |
instruction = query[:url_idx] | |
# This should be some internal IP to wherever the server runs | |
job = {"image_path": img_url, "instruction": instruction} | |
response = requests.post(endpoint, json=job) | |
if response.status_code != 200: | |
return "Could not finish the task try again later!" | |
return "Here is the edited image " + endpoint + response.json()["edited_image"] | |
# these tools should not step on each other's toes | |
tools = [ | |
Tool( | |
name="PAL-MATH", | |
func=PALChain.from_math_prompt(llm).run, | |
description=( | |
"A wrapper around calculator. " | |
"A language model that is really good at solving complex word math problems." | |
"Input should be a fully worded hard word math problem." | |
) | |
), | |
Tool( | |
name = "Image Understanding", | |
func=imun.run, | |
description=( | |
"A wrapper around Image Understanding. " | |
"Useful for when you need to understand what is inside an image (objects, texts, people)." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
Tool( | |
name = "OCR Understanding", | |
func=imun_read.run, | |
description=( | |
"A wrapper around OCR Understanding (Optical Character Recognition). " | |
"Useful after Image Understanding tool has found text or handwriting is present in the image tags." | |
"This tool can find the actual text, written name, or product name in the image." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
Tool( | |
name = "Receipt Understanding", | |
func=imun_receipt.run, | |
description=( | |
"A wrapper receipt understanding. " | |
"Useful after Image Understanding tool has recognized a receipt in the image tags." | |
"This tool can find the actual receipt text, prices and detailed items." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
Tool( | |
name = "Business Card Understanding", | |
func=imun_businesscard.run, | |
description=( | |
"A wrapper around business card understanding. " | |
"Useful after Image Understanding tool has recognized businesscard in the image tags." | |
"This tool can find the actual business card text, name, address, email, website on the card." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
Tool( | |
name = "Layout Understanding", | |
func=imun_layout.run, | |
description=( | |
"A wrapper around layout and table understanding. " | |
"Useful after Image Understanding tool has recognized businesscard in the image tags." | |
"This tool can find the actual business card text, name, address, email, website on the card." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
Tool( | |
name = "Celebrity Understanding", | |
func=imun_celeb.run, | |
description=( | |
"A wrapper around celebrity understanding. " | |
"Useful after Image Understanding tool has recognized people in the image tags that could be celebrities." | |
"This tool can find the name of celebrities in the image." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
BingSearchRun(api_wrapper=bing), | |
Tool( | |
name = "Photo Editing", | |
func=edit_photo, | |
description=( | |
"A wrapper around photo editing. " | |
"Useful to edit an image with a given instruction." | |
"Input should be an image url, or path to an image file (e.g. .jpg, .png)." | |
) | |
), | |
] | |
# chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory) | |
# chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True) | |
chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True, max_iterations=4) | |
print("langchain reloaded") | |
history = [] | |
history.append(("Show me what you got!", "Hi Human, I am ready to serve!")) | |
return history, history, chain | |
def run_chain(chain, inp): | |
# global chain | |
output = "" | |
try: | |
output = chain.conversation(input=inp, keep_short=ARGS.noIntermediateConv) | |
# output = chain.run(input=inp) | |
except AuthenticationError as ae: | |
output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae) | |
print("output", output) | |
except RateLimitError as rle: | |
output = "\n\nRateLimitError: " + str(rle) | |
except ValueError as ve: | |
output = "\n\nValueError: " + str(ve) | |
except InvalidRequestError as ire: | |
output = "\n\nInvalidRequestError: " + str(ire) | |
except Exception as e: | |
output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) | |
return output | |
class ChatWrapper: | |
def __init__(self): | |
self.lock = Lock() | |
def __call__( | |
self, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain] | |
): | |
"""Execute the chat functionality.""" | |
self.lock.acquire() | |
try: | |
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") | |
print("inp: " + inp) | |
history = history or [] | |
# If chain is None, that is because no API key was provided. | |
output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now()) | |
######################## | |
# multi line | |
outputs = run_chain(chain, inp) | |
outputs = process_chain_output(outputs) | |
print (" len(outputs) {}".format(len(outputs))) | |
for i, output in enumerate(outputs): | |
if i==0: | |
history.append((inp, output)) | |
else: | |
history.append((None, output)) | |
except Exception as e: | |
raise e | |
finally: | |
self.lock.release() | |
print (history) | |
return history, history, "" | |
# upload image | |
def add_image(state, chain, image): | |
global IMAGE_COUNT | |
global ARGS | |
IMAGE_COUNT = IMAGE_COUNT + 1 | |
state = state or [] | |
# cap_onnx = get_caption_onnx_api(image.name) | |
# cap_onnx = "The image shows " + cap_onnx | |
# state = state + [(f"![](/file={image.name})", cap_onnx)] | |
# : f"Image {N} http://0.0.0.0:7860/file={image.name}" | |
# Image_N | |
# wget http://0.0.0.0:7860/file=/tmp/bananabdzk2eqi.jpg | |
# url_input_for_chain = "Image_{} http://0.0.0.0:7860/file={}".format(IMAGE_COUNT, image.name) | |
url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, image.name) | |
# !!!!!! quick HACK to refer to image in this server for image editing pruprose | |
url_input_for_chain = url_input_for_chain.replace("0.0.0.0", "10.123.124.92") | |
######################## | |
# multi line | |
outputs = run_chain(chain, url_input_for_chain) | |
outputs = process_chain_output(outputs) | |
print (" len(outputs) {}".format(len(outputs))) | |
for i, output in enumerate(outputs): | |
if i==0: | |
# state.append((f"![](/file={image.name})", output)) | |
state.append(((image.name,), output)) | |
else: | |
state.append((None, output)) | |
print (state) | |
return state, state | |
def replace_with_image_markup(text): | |
img_url = None | |
text= text.strip() | |
url_idx = text.rfind(" ") | |
img_url = text[url_idx + 1:].strip() | |
if img_url.endswith((".", "?")): | |
img_url = img_url[:-1] | |
# if img_url is not None: | |
# img_url = f"![](/file={img_url})" | |
return img_url | |
def process_chain_output(outputs): | |
global ARGS | |
# print("outputs {}".format(outputs)) | |
if isinstance(outputs, str): # single line output | |
outputs = [outputs] | |
elif isinstance(outputs, list): # multi line output | |
if ARGS.noIntermediateConv: # remove the items with assistant in it. | |
cleanOutputs = [] | |
for output in outputs: | |
# print("inside loop outputs {}".format(output)) | |
# found an edited image url to embed | |
img_url = None | |
# print ("type list: {}".format(output)) | |
if "assistant: here is the edited image " in output.lower(): | |
img_url = replace_with_image_markup(output) | |
cleanOutputs.append("Assistant: Here is the edited image") | |
if img_url is not None: | |
cleanOutputs.append((img_url,)) | |
cleanOutputs.append(output) | |
# cleanOutputs = cleanOutputs + output+ "." | |
outputs = cleanOutputs | |
# make it bold | |
# outputs = "<b>{}</b>".format(outputs) | |
return outputs | |
def init_and_kick_off(): | |
global ARGS | |
# initalize chatWrapper | |
chat = ChatWrapper() | |
# with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block: | |
# with gr.Blocks(css="#resetbtn {background-color: #4CAF50; color: red;} #chatbot {height: 700px; overflow: auto;}") as block: | |
with gr.Blocks() as block: | |
llm_state = gr.State() | |
history_state = gr.State() | |
chain_state = gr.State() | |
reset_btn = gr.Button(value="!!!CLICK to wake up the AI!!!", variant="secondary", elem_id="resetbtn").style(full_width=False) | |
with gr.Row(): | |
chatbot = gr.Chatbot(elem_id="chatbot").style(height=620) | |
with gr.Row(): | |
with gr.Column(scale=0.75): | |
message = gr.Textbox(label="What's on your mind??", | |
placeholder="What's the answer to life, the universe, and everything?", | |
lines=1) | |
with gr.Column(scale=0.15): | |
submit = gr.Button(value="Send", variant="secondary").style(full_width=False) | |
with gr.Column(scale=0.10, min_width=0): | |
btn = gr.UploadButton("π", file_types=["image"]) | |
# btn = gr.UploadButton("π", file_types=["image", "video", "audio"]) | |
with gr.Row(): | |
with gr.Column(scale=0.90): | |
gr.HTML(""" | |
<p>This application, developed by Cognitive Service Team Microsoft, demonstrates all cognitive service APIs in a conversational agent | |
</p>""") | |
# with gr.Column(scale=0.10): | |
# reset_btn = gr.Button(value="Initiate Chat", variant="secondary", elem_id="resetbtn").style(full_width=False) | |
message.submit(chat, inputs=[message, history_state, chain_state], | |
outputs=[chatbot, history_state, message]) | |
submit.click(chat, inputs=[message, history_state, chain_state], | |
outputs=[chatbot, history_state, message]) | |
btn.upload(add_image, inputs=[history_state, chain_state, btn], outputs=[history_state, chatbot]) | |
# reset_btn.click(reset_memory, inputs=[history_state], outputs=[chatbot, history_state]) | |
# openai_api_key_textbox.change(set_openai_api_key, | |
# inputs=[openai_api_key_textbox], | |
# outputs=[chain_state]) | |
# load the chain | |
reset_btn.click(load_chain, inputs=[history_state], outputs=[chatbot, history_state, chain_state]) | |
# # load the chain | |
# load_chain() | |
# launch the app | |
block.launch(server_name="0.0.0.0", server_port = ARGS.port) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--port', type=int, required=False, default=7860) | |
parser.add_argument('--openAIModel', type=str, required=False, default='openAIGPT35') | |
parser.add_argument('--noIntermediateConv', default=False, action='store_true', help='if this flag is turned on no intermediate conversation should be shown') | |
global ARGS | |
ARGS = parser.parse_args() | |
init_and_kick_off() | |
# python app.py --port 7860 --openAIModel 'openAIGPT35' | |
# python app.py --port 7860 --openAIModel 'azureTextDavinci003' | |
# python app.py --port 7861 --openAIModel 'azureChatGPT' | |
# python app.py --port 7860 --openAIModel 'azureChatGPT' --noIntermediateConv | |
# python app.py --port 7862 --openAIModel 'azureGPT35turbo' --noIntermediateConv |