# example call script # https://dev.azure.com/visionbio/objectdetection/_git/objectdetection?path=/verify/langimg.py&version=GBehazar/langchain&_a=contents import re import io import os import ssl from typing import Optional, Tuple import datetime import sys import gradio as gr import requests import json from threading import Lock from langchain import ConversationChain, LLMChain from langchain.agents import load_tools, initialize_agent, Tool from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms import OpenAI from langchain.chains import PALChain from langchain.llms import AzureOpenAI from langchain.utilities import ImunAPIWrapper, ImunMultiAPIWrapper from openai.error import AuthenticationError, InvalidRequestError, RateLimitError import argparse # header_key = os.environ.get("CVFIAHMED_KEY") OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") TOOLS_LIST = ['pal-math', 'imun'] #'google-search','news-api','tmdb-api','open-meteo-api' TOOLS_DEFAULT_LIST = ['pal-math', 'imun'] BUG_FOUND_MSG = "Congratulations, you've found a bug in this application!" AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. " MAX_TOKENS = 512 ############ GLOBAL CHAIN ########### # chain = None # memory = None ##################################### ############ GLOBAL IMAGE_COUNT ##### IMAGE_COUNT=0 ##################################### ############## ARGS ################# AGRS = None ##################################### # Temporarily address Wolfram Alpha SSL certificate issue ssl._create_default_https_context = ssl._create_unverified_context def get_caption_onnx_api(imgf): headers = { 'Content-Type': 'application/octet-stream', 'Ocp-Apim-Subscription-Key': header_key, } params = { 'features': 'description', 'model-version': 'latest', 'language': 'en', 'descriptionExclude': 'Celebrities,Landmarks', } with open(imgf, 'rb') as f: data = f.read() response = requests.post('https://cvfiahmed.cognitiveservices.azure.com/vision/v2022-07-31-preview/operations/imageanalysis:analyze', params=params, headers=headers, data=data) return json.loads(response.content)['descriptionResult']['values'][0]['text'] def reset_memory(history): # global memory # memory.clear() print ("clearning memory, loading langchain...") load_chain() history = [] return history, history def load_chain(history): global ARGS # global chain # global memory # memory = None if ARGS.openAIModel == 'openAIGPT35': # openAI GPT 3.5 llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureChatGPT': # for Azure OpenAI ChatGPT # Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1 # llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=1, top_p=0.9, max_tokens=MAX_TOKENS) llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureGPT35turbo': llm = AzureOpenAI(deployment_name="gpt-35-turbo-version-0301", model_name="gpt-35-turbo (version 0301)", temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureTextDavinci003': # for Azure OpenAI ChatGPT # Azure OpenAI param name 'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1 llm = AzureOpenAI(deployment_name="text-davinci-003", model_name="text-davinci-003", temperature=0, max_tokens=MAX_TOKENS) # tool_names = TOOLS_DEFAULT_LIST # tools = load_tools(tool_names, llm=llm) memory = ConversationBufferMemory(memory_key="chat_history") ############################# # loading tools imun_dense = ImunAPIWrapper( imun_url="https://ehazarwestus.cognitiveservices.azure.com/computervision/imageanalysis:analyze", params="api-version=2023-02-01-preview&model-version=latest&features=denseCaptions", imun_subscription_key=os.environ.get("IMUN_SUBSCRIPTION_KEY2")) imun = ImunAPIWrapper() imun = ImunMultiAPIWrapper(imuns=[imun, imun_dense]) imun_celeb = ImunAPIWrapper( imun_url="https://cvfiahmed.cognitiveservices.azure.com/vision/v3.2/models/celebrities/analyze", params="") imun_read = ImunAPIWrapper( imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-read:analyze", params="api-version=2022-08-31", imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_receipt = ImunAPIWrapper( imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-receipt:analyze", params="api-version=2022-08-31", imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_businesscard = ImunAPIWrapper( imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-businessCard:analyze", params="api-version=2022-08-31", imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_layout = ImunAPIWrapper( imun_url="https://vigehazar.cognitiveservices.azure.com/formrecognizer/documentModels/prebuilt-layout:analyze", params="api-version=2022-08-31", imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) bing = BingSearchAPIWrapper(k=2) def edit_photo(query: str) -> str: endpoint = "http://10.123.124.92:7863/" query = query.strip() url_idx = query.rfind(" ") img_url = query[url_idx + 1:].strip() if img_url.endswith((".", "?")): img_url = img_url[:-1] if not img_url.startswith(("http://", "https://")): return "Invalid image URL" img_url = img_url.replace("0.0.0.0", "10.123.124.92") instruction = query[:url_idx] # This should be some internal IP to wherever the server runs job = {"image_path": img_url, "instruction": instruction} response = requests.post(endpoint, json=job) if response.status_code != 200: return "Could not finish the task try again later!" return "Here is the edited image " + endpoint + response.json()["edited_image"] # these tools should not step on each other's toes tools = [ Tool( name="PAL-MATH", func=PALChain.from_math_prompt(llm).run, description=( "A wrapper around calculator. " "A language model that is really good at solving complex word math problems." "Input should be a fully worded hard word math problem." ) ), Tool( name = "Image Understanding", func=imun.run, description=( "A wrapper around Image Understanding. " "Useful for when you need to understand what is inside an image (objects, texts, people)." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "OCR Understanding", func=imun_read.run, description=( "A wrapper around OCR Understanding (Optical Character Recognition). " "Useful after Image Understanding tool has found text or handwriting is present in the image tags." "This tool can find the actual text, written name, or product name in the image." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Receipt Understanding", func=imun_receipt.run, description=( "A wrapper receipt understanding. " "Useful after Image Understanding tool has recognized a receipt in the image tags." "This tool can find the actual receipt text, prices and detailed items." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Business Card Understanding", func=imun_businesscard.run, description=( "A wrapper around business card understanding. " "Useful after Image Understanding tool has recognized businesscard in the image tags." "This tool can find the actual business card text, name, address, email, website on the card." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Layout Understanding", func=imun_layout.run, description=( "A wrapper around layout and table understanding. " "Useful after Image Understanding tool has recognized businesscard in the image tags." "This tool can find the actual business card text, name, address, email, website on the card." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Celebrity Understanding", func=imun_celeb.run, description=( "A wrapper around celebrity understanding. " "Useful after Image Understanding tool has recognized people in the image tags that could be celebrities." "This tool can find the name of celebrities in the image." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), BingSearchRun(api_wrapper=bing), Tool( name = "Photo Editing", func=edit_photo, description=( "A wrapper around photo editing. " "Useful to edit an image with a given instruction." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), ] # chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory) # chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True) chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True, max_iterations=4) print("langchain reloaded") history = [] history.append(("Show me what you got!", "Hi Human, I am ready to serve!")) return history, history, chain def run_chain(chain, inp): # global chain output = "" try: output = chain.conversation(input=inp, keep_short=ARGS.noIntermediateConv) # output = chain.run(input=inp) except AuthenticationError as ae: output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae) print("output", output) except RateLimitError as rle: output = "\n\nRateLimitError: " + str(rle) except ValueError as ve: output = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: output = "\n\nInvalidRequestError: " + str(ire) except Exception as e: output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) return output class ChatWrapper: def __init__(self): self.lock = Lock() def __call__( self, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain] ): """Execute the chat functionality.""" self.lock.acquire() try: print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) history = history or [] # If chain is None, that is because no API key was provided. output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now()) ######################## # multi line outputs = run_chain(chain, inp) outputs = process_chain_output(outputs) print (" len(outputs) {}".format(len(outputs))) for i, output in enumerate(outputs): if i==0: history.append((inp, output)) else: history.append((None, output)) except Exception as e: raise e finally: self.lock.release() print (history) return history, history, "" # upload image def add_image(state, chain, image): global IMAGE_COUNT global ARGS IMAGE_COUNT = IMAGE_COUNT + 1 state = state or [] # cap_onnx = get_caption_onnx_api(image.name) # cap_onnx = "The image shows " + cap_onnx # state = state + [(f"![](/file={image.name})", cap_onnx)] # : f"Image {N} http://0.0.0.0:7860/file={image.name}" # Image_N # wget http://0.0.0.0:7860/file=/tmp/bananabdzk2eqi.jpg # url_input_for_chain = "Image_{} http://0.0.0.0:7860/file={}".format(IMAGE_COUNT, image.name) url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, image.name) # !!!!!! quick HACK to refer to image in this server for image editing pruprose url_input_for_chain = url_input_for_chain.replace("0.0.0.0", "10.123.124.92") ######################## # multi line outputs = run_chain(chain, url_input_for_chain) outputs = process_chain_output(outputs) print (" len(outputs) {}".format(len(outputs))) for i, output in enumerate(outputs): if i==0: # state.append((f"![](/file={image.name})", output)) state.append(((image.name,), output)) else: state.append((None, output)) print (state) return state, state def replace_with_image_markup(text): img_url = None text= text.strip() url_idx = text.rfind(" ") img_url = text[url_idx + 1:].strip() if img_url.endswith((".", "?")): img_url = img_url[:-1] # if img_url is not None: # img_url = f"![](/file={img_url})" return img_url def process_chain_output(outputs): global ARGS # print("outputs {}".format(outputs)) if isinstance(outputs, str): # single line output outputs = [outputs] elif isinstance(outputs, list): # multi line output if ARGS.noIntermediateConv: # remove the items with assistant in it. cleanOutputs = [] for output in outputs: # print("inside loop outputs {}".format(output)) # found an edited image url to embed img_url = None # print ("type list: {}".format(output)) if "assistant: here is the edited image " in output.lower(): img_url = replace_with_image_markup(output) cleanOutputs.append("Assistant: Here is the edited image") if img_url is not None: cleanOutputs.append((img_url,)) cleanOutputs.append(output) # cleanOutputs = cleanOutputs + output+ "." outputs = cleanOutputs # make it bold # outputs = "{}".format(outputs) return outputs def init_and_kick_off(): global ARGS # initalize chatWrapper chat = ChatWrapper() # with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block: # with gr.Blocks(css="#resetbtn {background-color: #4CAF50; color: red;} #chatbot {height: 700px; overflow: auto;}") as block: with gr.Blocks() as block: llm_state = gr.State() history_state = gr.State() chain_state = gr.State() reset_btn = gr.Button(value="!!!CLICK to wake up the AI!!!", variant="secondary", elem_id="resetbtn").style(full_width=False) with gr.Row(): chatbot = gr.Chatbot(elem_id="chatbot").style(height=620) with gr.Row(): with gr.Column(scale=0.75): message = gr.Textbox(label="What's on your mind??", placeholder="What's the answer to life, the universe, and everything?", lines=1) with gr.Column(scale=0.15): submit = gr.Button(value="Send", variant="secondary").style(full_width=False) with gr.Column(scale=0.10, min_width=0): btn = gr.UploadButton("📁", file_types=["image"]) # btn = gr.UploadButton("📁", file_types=["image", "video", "audio"]) with gr.Row(): with gr.Column(scale=0.90): gr.HTML("""

This application, developed by Cognitive Service Team Microsoft, demonstrates all cognitive service APIs in a conversational agent

""") # with gr.Column(scale=0.10): # reset_btn = gr.Button(value="Initiate Chat", variant="secondary", elem_id="resetbtn").style(full_width=False) message.submit(chat, inputs=[message, history_state, chain_state], outputs=[chatbot, history_state, message]) submit.click(chat, inputs=[message, history_state, chain_state], outputs=[chatbot, history_state, message]) btn.upload(add_image, inputs=[history_state, chain_state, btn], outputs=[history_state, chatbot]) # reset_btn.click(reset_memory, inputs=[history_state], outputs=[chatbot, history_state]) # openai_api_key_textbox.change(set_openai_api_key, # inputs=[openai_api_key_textbox], # outputs=[chain_state]) # load the chain reset_btn.click(load_chain, inputs=[history_state], outputs=[chatbot, history_state, chain_state]) # # load the chain # load_chain() # launch the app block.launch(server_name="0.0.0.0", server_port = ARGS.port) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, required=False, default=7860) parser.add_argument('--openAIModel', type=str, required=False, default='openAIGPT35') parser.add_argument('--noIntermediateConv', default=False, action='store_true', help='if this flag is turned on no intermediate conversation should be shown') global ARGS ARGS = parser.parse_args() init_and_kick_off() # python app.py --port 7860 --openAIModel 'openAIGPT35' # python app.py --port 7860 --openAIModel 'azureTextDavinci003' # python app.py --port 7861 --openAIModel 'azureChatGPT' # python app.py --port 7860 --openAIModel 'azureChatGPT' --noIntermediateConv # python app.py --port 7862 --openAIModel 'azureGPT35turbo' --noIntermediateConv