iofu728 commited on
Commit
c5b556d
·
1 Parent(s): 0b7e673

Feature(LLMLingua): update readme

Browse files
Files changed (1) hide show
  1. README.md +26 -0
README.md CHANGED
@@ -11,3 +11,29 @@ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ <div style="display: flex; align-items: center; ">
17
+ <div style="width: 100px; margin-right: 10px; height:auto;" align="left">
18
+ <img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left">
19
+ </div>
20
+ <div style="flex-grow: 1;" align="center">
21
+ <h2 align="center">LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models & LongLLMLingua</h1>
22
+ </div>
23
+ </div>
24
+
25
+ <p align="center">
26
+ | <a href="https://arxiv.org/abs/2310.05736"><b>LLMLingua Paper</b></a> | <a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua Paper</b></a> | <a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>HF Space Demo</b></a> |
27
+ </p>
28
+
29
+ ## Tl;DR
30
+
31
+ LLMLingua, that uses a well-trained small language model after alignment, such as GPT2-small or LLaMA-7B, to detect the unimportant tokens in the prompt and enable inference with the compressed prompt in black-box LLMs, achieving up to 20x compression with minimal performance loss.
32
+
33
+ [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://arxiv.org/abs/2310.05736) (EMNLP 2023).<br>
34
+ _Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
35
+
36
+ LongLLMLingua is a method that enhances LLMs' ability to perceive key information in long-context scenarios using prompt compression, achieveing up to $28.5 in cost savings per 1,000 samples while also improving performance.
37
+
38
+ [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (Under Review).<br>
39
+ _Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_