Spaces:
Running
Running
File size: 1,461 Bytes
02a1232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as grad
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
def generate(plain_text):
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip()
print("[I] Prompter input: %s" % plain_text)
print("[I] Prompter output: %s \n------------\n" % res)
return res
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt")
out = grad.Textbox(lines=1, label="Optimized Prompt")
grad.Interface(fn=generate,
inputs=txt,
outputs=out,
title="Promptist",
allow_flagging='never',
cache_examples=False,
theme="default").launch(enable_queue=True, share=True, debug=True) |