File size: 5,443 Bytes
420400a
0a57289
420400a
 
 
 
 
7275eb6
 
 
0a57289
 
 
7275eb6
 
 
 
 
670efcf
7275eb6
 
0a57289
 
 
 
420400a
 
7275eb6
420400a
7275eb6
670efcf
420400a
 
0a57289
420400a
 
0a57289
420400a
 
670efcf
420400a
0a57289
420400a
 
670efcf
7275eb6
 
420400a
 
 
 
 
670efcf
 
 
420400a
670efcf
 
7275eb6
420400a
7275eb6
 
420400a
 
 
 
 
 
 
 
7275eb6
 
 
 
 
 
420400a
 
 
 
 
 
 
 
 
 
670efcf
 
420400a
 
 
670efcf
7275eb6
 
420400a
 
0a57289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420400a
 
 
 
 
670efcf
420400a
 
 
 
 
 
0a57289
420400a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import torch
from torchaudio.sox_effects import apply_effects_file
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (
    STYLE
    + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
    </div>
"""
)
OUTPUT_FAIL = (
    STYLE
    + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
    </div>
"""
)

EFFECTS = [
    ["remix", "-"],
    ["channels", "1"],
    ["rate", "16000"],
    ["gain", "-1.0"],
    ["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
    ["trim", "0", "10"],
]

THRESHOLD = 0.85

model_name = "microsoft/unispeech-sat-base-plus-sv"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
cosine_sim = torch.nn.CosineSimilarity(dim=-1)


def similarity_fn(path1, path2):
    if not (path1 and path2):
        return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'

    wav1, _ = apply_effects_file(path1, EFFECTS)
    wav2, _ = apply_effects_file(path2, EFFECTS)
    print(wav1.shape, wav2.shape)

    input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
    input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)

    with torch.no_grad():
        emb1 = model(input1).embeddings
        emb2 = model(input2).embeddings
    emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu()
    emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu()
    similarity = cosine_sim(emb1, emb2).numpy()[0]

    if similarity >= THRESHOLD:
        output = OUTPUT_OK.format(similarity * 100)
    else:
        output = OUTPUT_FAIL.format(similarity * 100)

    return output


inputs = [
    gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
    gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
output = gr.outputs.HTML(label="")


description = (
    "This demo will compare two speech samples and determine if they are from the same speaker. "
    "Try it with your own voice!"
)
article = (
    "<p style='text-align: center'>"
    "<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>πŸŽ™οΈ Learn more about UniSpeech-SAT</a> | "
    "<a href='https://arxiv.org/abs/2110.05752' target='_blank'>πŸ“š UniSpeech-SAT paper</a> | "
    "<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>πŸ“š X-Vector paper</a>"
    "</p>"
)
examples = [
    ["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"],
    ["samples/cate_blanch.mp3", "samples/cate_blanch_3.mp3"],
    ["samples/cate_blanch_2.mp3", "samples/cate_blanch_3.mp3"],
    ["samples/heath_ledger.mp3", "samples/heath_ledger_2.mp3"],
    ["samples/heath_ledger.mp3", "samples/heath_ledger_3.mp3"],
    ["samples/heath_ledger_2.mp3", "samples/heath_ledger_3.mp3"],
    ["samples/russel_crowe.mp3", "samples/russel_crowe_2.mp3"],
    ["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"],
    ["samples/russel_crowe.mp3", "samples/kirsten_dunst.wav"],
    ["samples/russel_crowe_2.mp3", "samples/kirsten_dunst.wav"],
    ["samples/leonardo_dicaprio.mp3", "samples/denzel_washington.mp3"],
    ["samples/heath_ledger.mp3", "samples/denzel_washington.mp3"],
    ["samples/heath_ledger_2.mp3", "samples/denzel_washington.mp3"],
    ["samples/leonardo_dicaprio.mp3", "samples/russel_crowe.mp3"],
    ["samples/leonardo_dicaprio.mp3", "samples/russel_crowe_2.mp3"],
    ["samples/naomi_watts.mp3", "samples/denzel_washington.mp3"],
    ["samples/naomi_watts.mp3", "samples/leonardo_dicaprio.mp3"],
    ["samples/naomi_watts.mp3", "samples/cate_blanch_2.mp3"],
    ["samples/naomi_watts.mp3", "samples/kirsten_dunst.wav"],
]

interface = gr.Interface(
    fn=similarity_fn,
    inputs=inputs,
    outputs=output,
    title="Voice Authentication with UniSpeech-SAT + X-Vectors",
    description=description,
    article=article,
    layout="horizontal",
    theme="huggingface",
    allow_flagging=False,
    live=False,
    examples=examples,
)
interface.launch(enable_queue=True)