Upload run_eval.py
Browse files- run_eval.py +282 -0
run_eval.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import json
|
19 |
+
import time
|
20 |
+
import warnings
|
21 |
+
from logging import getLogger
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Dict, List
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from tqdm import tqdm
|
27 |
+
|
28 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
29 |
+
from utils import (
|
30 |
+
calculate_bleu,
|
31 |
+
calculate_rouge,
|
32 |
+
chunks,
|
33 |
+
parse_numeric_n_bool_cl_kwargs,
|
34 |
+
use_task_specific_params,
|
35 |
+
)
|
36 |
+
|
37 |
+
from evaluate_gpt import gpt_eval
|
38 |
+
|
39 |
+
|
40 |
+
logger = getLogger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
|
45 |
+
|
46 |
+
def generate_summaries_or_translations(
|
47 |
+
examples: List[str],
|
48 |
+
out_file: str,
|
49 |
+
model_name: str,
|
50 |
+
batch_size: int = 8,
|
51 |
+
device: str = DEFAULT_DEVICE,
|
52 |
+
fp16=False,
|
53 |
+
task="summarization",
|
54 |
+
prefix=None,
|
55 |
+
**generate_kwargs,
|
56 |
+
) -> Dict:
|
57 |
+
"""Save model.generate results to <out_file>, and return how long it took."""
|
58 |
+
fout = Path(out_file).open("w", encoding="utf-8")
|
59 |
+
model_name = str(model_name)
|
60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
61 |
+
if fp16:
|
62 |
+
model = model.half()
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
+
logger.info(
|
66 |
+
f"Inferred tokenizer type: {tokenizer.__class__}"
|
67 |
+
) # if this is wrong, check config.model_type.
|
68 |
+
|
69 |
+
start_time = time.time()
|
70 |
+
# update config with task specific params
|
71 |
+
use_task_specific_params(model, task)
|
72 |
+
if prefix is None:
|
73 |
+
prefix = prefix or getattr(model.config, "prefix", "") or ""
|
74 |
+
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
|
75 |
+
examples_chunk = [prefix + text for text in examples_chunk]
|
76 |
+
batch = tokenizer(
|
77 |
+
examples_chunk, return_tensors="pt", truncation=True, padding="longest"
|
78 |
+
).to(device)
|
79 |
+
summaries = model.generate(
|
80 |
+
input_ids=batch.input_ids,
|
81 |
+
attention_mask=batch.attention_mask,
|
82 |
+
**generate_kwargs,
|
83 |
+
)
|
84 |
+
dec = tokenizer.batch_decode(
|
85 |
+
summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
86 |
+
)
|
87 |
+
for hypothesis in dec:
|
88 |
+
fout.write(hypothesis + "\n")
|
89 |
+
fout.flush()
|
90 |
+
fout.close()
|
91 |
+
runtime = int(time.time() - start_time) # seconds
|
92 |
+
n_obs = len(examples)
|
93 |
+
return dict(
|
94 |
+
n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4)
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def datetime_now():
|
99 |
+
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
100 |
+
|
101 |
+
|
102 |
+
def run_generate(
|
103 |
+
verbose=True,
|
104 |
+
model_name_path=None,
|
105 |
+
src_txt=None,
|
106 |
+
tar_txt=None,
|
107 |
+
gen_path=None,
|
108 |
+
scor_path=None,
|
109 |
+
batch_size=None,
|
110 |
+
):
|
111 |
+
"""
|
112 |
+
|
113 |
+
Takes input text, generates output, and then using reference calculates the BLEU scores.
|
114 |
+
|
115 |
+
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
a tuple: ``(scores, params}``
|
122 |
+
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
|
123 |
+
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
|
124 |
+
"""
|
125 |
+
|
126 |
+
parser = argparse.ArgumentParser()
|
127 |
+
parser.add_argument(
|
128 |
+
"--model_name",
|
129 |
+
type=str,
|
130 |
+
required=False,
|
131 |
+
help="like facebook/bart-large-cnn,t5-base, etc.",
|
132 |
+
)
|
133 |
+
parser.add_argument(
|
134 |
+
"--input_path", type=str, required=False, help="like cnn_dm/test.source"
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--save_path", type=str, required=False, help="where to save summaries"
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--reference_path", type=str, required=False, help="like cnn_dm/test.target"
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--score_path",
|
144 |
+
type=str,
|
145 |
+
required=False,
|
146 |
+
default="metrics.json",
|
147 |
+
help="where to save metrics",
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--device",
|
151 |
+
type=str,
|
152 |
+
required=False,
|
153 |
+
default=DEFAULT_DEVICE,
|
154 |
+
help="cuda, cuda:1, cpu etc.",
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--prefix",
|
158 |
+
type=str,
|
159 |
+
required=False,
|
160 |
+
default=None,
|
161 |
+
help="will be added to the begininng of src examples",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--task",
|
165 |
+
type=str,
|
166 |
+
default="summarization",
|
167 |
+
help="used for task_specific_params + metrics",
|
168 |
+
)
|
169 |
+
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
|
170 |
+
parser.add_argument(
|
171 |
+
"--n_obs",
|
172 |
+
type=int,
|
173 |
+
default=-1,
|
174 |
+
required=False,
|
175 |
+
help="How many observations. Defaults to all.",
|
176 |
+
)
|
177 |
+
parser.add_argument("--fp16", action="store_true")
|
178 |
+
parser.add_argument(
|
179 |
+
"--dump-args",
|
180 |
+
action="store_true",
|
181 |
+
help="print the custom hparams with the results",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--info",
|
185 |
+
nargs="?",
|
186 |
+
type=str,
|
187 |
+
const=datetime_now(),
|
188 |
+
help="use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g. lang=en-ru. If no value is passed, the current datetime string will be used.",
|
189 |
+
)
|
190 |
+
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
|
191 |
+
args, rest = parser.parse_known_args()
|
192 |
+
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
|
193 |
+
if model_name_path:
|
194 |
+
args.model_name = model_name_path
|
195 |
+
|
196 |
+
if src_txt:
|
197 |
+
args.input_path = src_txt
|
198 |
+
|
199 |
+
if tar_txt:
|
200 |
+
args.reference_path = tar_txt
|
201 |
+
|
202 |
+
if batch_size:
|
203 |
+
args.bs = batch_size
|
204 |
+
|
205 |
+
if gen_path:
|
206 |
+
args.save_path = gen_path
|
207 |
+
|
208 |
+
if scor_path:
|
209 |
+
args.score_path = scor_path
|
210 |
+
|
211 |
+
if args.model_name[-3:] == 'gpt':
|
212 |
+
gpt_eval(
|
213 |
+
model_name_path=args.model_name,
|
214 |
+
src_txt=args.input_path,
|
215 |
+
tar_txt=args.reference_path,
|
216 |
+
gen_path=args.save_path,
|
217 |
+
scor_path=args.score_path,
|
218 |
+
batch_size=args.bs
|
219 |
+
)
|
220 |
+
return None
|
221 |
+
|
222 |
+
if parsed_args and verbose:
|
223 |
+
print(f"parsed the following generate kwargs: {parsed_args}")
|
224 |
+
examples = [
|
225 |
+
" " + x.rstrip() if "t5" in args.model_name else x.rstrip()
|
226 |
+
for x in open(args.input_path).readlines()
|
227 |
+
]
|
228 |
+
if args.n_obs > 0:
|
229 |
+
examples = examples[: args.n_obs]
|
230 |
+
Path(args.save_path).parent.mkdir(exist_ok=True)
|
231 |
+
|
232 |
+
if args.reference_path is None and Path(args.score_path).exists():
|
233 |
+
warnings.warn(
|
234 |
+
f"score_path {args.score_path} will be overwritten unless you type ctrl-c."
|
235 |
+
)
|
236 |
+
|
237 |
+
if args.device == "cpu" and args.fp16:
|
238 |
+
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
|
239 |
+
raise ValueError("Can't mix --fp16 and --device cpu")
|
240 |
+
|
241 |
+
runtime_metrics = generate_summaries_or_translations(
|
242 |
+
examples,
|
243 |
+
args.save_path,
|
244 |
+
args.model_name,
|
245 |
+
batch_size=args.bs,
|
246 |
+
device=args.device,
|
247 |
+
fp16=args.fp16,
|
248 |
+
task=args.task,
|
249 |
+
prefix=args.prefix,
|
250 |
+
**parsed_args,
|
251 |
+
)
|
252 |
+
|
253 |
+
if args.reference_path is None:
|
254 |
+
return {}
|
255 |
+
|
256 |
+
# Compute scores
|
257 |
+
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
|
258 |
+
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
|
259 |
+
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][
|
260 |
+
: len(output_lns)
|
261 |
+
]
|
262 |
+
scores: dict = score_fn(output_lns, reference_lns)
|
263 |
+
scores.update(runtime_metrics)
|
264 |
+
|
265 |
+
if args.dump_args:
|
266 |
+
scores.update(parsed_args)
|
267 |
+
if args.info:
|
268 |
+
scores["info"] = args.info
|
269 |
+
|
270 |
+
if verbose:
|
271 |
+
print(scores)
|
272 |
+
|
273 |
+
if args.score_path is not None:
|
274 |
+
json.dump(scores, open(args.score_path, "w"))
|
275 |
+
|
276 |
+
return scores
|
277 |
+
|
278 |
+
|
279 |
+
if __name__ == "__main__":
|
280 |
+
# Usage for MT:
|
281 |
+
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
|
282 |
+
run_generate(verbose=True)
|