Spaces:
Runtime error
Runtime error
Commit
Β·
0a0f99c
1
Parent(s):
bed8333
add readme updates
Browse files- README.md +2 -2
- assets/ui-full.png +0 -0
- assets/ui.png +0 -0
- src/distilabel_dataset_generator/pipelines/eval.py +34 -17
README.md
CHANGED
@@ -20,12 +20,12 @@ hf_oauth_scopes:
|
|
20 |
|
21 |
<h1 align="center">
|
22 |
<br>
|
23 |
-
|
24 |
<br>
|
25 |
</h1>
|
26 |
<h3 align="center">Build datasets using natural language</h2>
|
27 |
|
28 |
-
![Synthetic Data Generator](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/ui.png)
|
29 |
|
30 |
<p align="center">
|
31 |
<a href="https://pypi.org/project/synthetic-dataset-generator/">
|
|
|
20 |
|
21 |
<h1 align="center">
|
22 |
<br>
|
23 |
+
Synthetic Data Generator
|
24 |
<br>
|
25 |
</h1>
|
26 |
<h3 align="center">Build datasets using natural language</h2>
|
27 |
|
28 |
+
![Synthetic Data Generator](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/ui-full.png)
|
29 |
|
30 |
<p align="center">
|
31 |
<a href="https://pypi.org/project/synthetic-dataset-generator/">
|
assets/ui-full.png
ADDED
assets/ui.png
CHANGED
src/distilabel_dataset_generator/pipelines/eval.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
from datasets import get_dataset_config_names, get_dataset_split_names
|
4 |
from distilabel.llms import InferenceEndpointsLLM
|
5 |
from distilabel.steps.tasks import (
|
6 |
-
UltraFeedback,
|
7 |
TextGeneration,
|
|
|
8 |
)
|
9 |
|
10 |
from src.distilabel_dataset_generator.pipelines.base import (
|
@@ -21,7 +19,7 @@ def get_ultrafeedback_evaluator(aspect, is_sample):
|
|
21 |
tokenizer_id=MODEL,
|
22 |
api_key=_get_next_api_key(),
|
23 |
generation_kwargs={
|
24 |
-
"temperature": 0
|
25 |
"max_new_tokens": 256 if is_sample else 2048,
|
26 |
},
|
27 |
),
|
@@ -39,12 +37,12 @@ def get_custom_evaluator(prompt_template, structured_output, columns, is_sample)
|
|
39 |
api_key=_get_next_api_key(),
|
40 |
structured_output={"format": "json", "schema": structured_output},
|
41 |
generation_kwargs={
|
42 |
-
"temperature": 0
|
43 |
"max_new_tokens": 256 if is_sample else 2048,
|
44 |
},
|
45 |
),
|
46 |
template=prompt_template,
|
47 |
-
columns=columns
|
48 |
)
|
49 |
custom_evaluator.load()
|
50 |
return custom_evaluator
|
@@ -81,13 +79,13 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
81 |
tokenizer_id=MODEL,
|
82 |
api_key=os.environ["HF_TOKEN"],
|
83 |
generation_kwargs={{
|
84 |
-
"temperature": 0
|
85 |
"max_new_tokens": 2048,
|
86 |
}},
|
87 |
),
|
88 |
aspect=aspect,
|
89 |
)
|
90 |
-
|
91 |
load_the_dataset >> ultrafeedback_evaluator
|
92 |
|
93 |
if __name__ == "__main__":
|
@@ -113,7 +111,7 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
113 |
load_the_dataset = LoadDataFromDicts(
|
114 |
data = data,
|
115 |
)
|
116 |
-
|
117 |
tasks = []
|
118 |
for aspect in aspects:
|
119 |
evaluate_responses = UltraFeedback(
|
@@ -124,7 +122,7 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
124 |
tokenizer_id=MODEL,
|
125 |
api_key=os.environ["HF_TOKEN"],
|
126 |
generation_kwargs={{
|
127 |
-
"temperature": 0
|
128 |
"max_new_tokens": 2048,
|
129 |
}},
|
130 |
output_mappings={{
|
@@ -135,9 +133,9 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
135 |
}} if aspect in ["truthfulness", "helpfulness"] else {{"rationales": f"rationales_{{aspect}}", "ratings": f"ratings_{{aspect}}"}},
|
136 |
)
|
137 |
tasks.append(evaluate_responses)
|
138 |
-
|
139 |
combine_outputs = CombineOutputs()
|
140 |
-
|
141 |
load_the_dataset >> tasks >> combine_outputs
|
142 |
|
143 |
if __name__ == "__main__":
|
@@ -177,14 +175,14 @@ with Pipeline(name="custom-evaluation") as pipeline:
|
|
177 |
api_key=os.environ["HF_TOKEN"],
|
178 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
179 |
generation_kwargs={{
|
180 |
-
"temperature": 0
|
181 |
"max_new_tokens": 2048,
|
182 |
}},
|
183 |
),
|
184 |
template=CUSTOM_TEMPLATE,
|
185 |
columns={columns}
|
186 |
)
|
187 |
-
|
188 |
load_the_dataset >> custom_evaluator
|
189 |
|
190 |
if __name__ == "__main__":
|
@@ -193,7 +191,16 @@ if __name__ == "__main__":
|
|
193 |
return code
|
194 |
|
195 |
|
196 |
-
def generate_pipeline_code(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if repo_id is None:
|
198 |
subset = "default"
|
199 |
split = "train"
|
@@ -201,5 +208,15 @@ def generate_pipeline_code(repo_id, aspects, instruction_column, response_column
|
|
201 |
subset = get_dataset_config_names(repo_id)[0]
|
202 |
split = get_dataset_split_names(repo_id, subset)[0]
|
203 |
if eval_type == "ultrafeedback":
|
204 |
-
return generate_ultrafeedback_pipeline_code(
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import get_dataset_config_names, get_dataset_split_names
|
2 |
from distilabel.llms import InferenceEndpointsLLM
|
3 |
from distilabel.steps.tasks import (
|
|
|
4 |
TextGeneration,
|
5 |
+
UltraFeedback,
|
6 |
)
|
7 |
|
8 |
from src.distilabel_dataset_generator.pipelines.base import (
|
|
|
19 |
tokenizer_id=MODEL,
|
20 |
api_key=_get_next_api_key(),
|
21 |
generation_kwargs={
|
22 |
+
"temperature": 0,
|
23 |
"max_new_tokens": 256 if is_sample else 2048,
|
24 |
},
|
25 |
),
|
|
|
37 |
api_key=_get_next_api_key(),
|
38 |
structured_output={"format": "json", "schema": structured_output},
|
39 |
generation_kwargs={
|
40 |
+
"temperature": 0,
|
41 |
"max_new_tokens": 256 if is_sample else 2048,
|
42 |
},
|
43 |
),
|
44 |
template=prompt_template,
|
45 |
+
columns=columns,
|
46 |
)
|
47 |
custom_evaluator.load()
|
48 |
return custom_evaluator
|
|
|
79 |
tokenizer_id=MODEL,
|
80 |
api_key=os.environ["HF_TOKEN"],
|
81 |
generation_kwargs={{
|
82 |
+
"temperature": 0,
|
83 |
"max_new_tokens": 2048,
|
84 |
}},
|
85 |
),
|
86 |
aspect=aspect,
|
87 |
)
|
88 |
+
|
89 |
load_the_dataset >> ultrafeedback_evaluator
|
90 |
|
91 |
if __name__ == "__main__":
|
|
|
111 |
load_the_dataset = LoadDataFromDicts(
|
112 |
data = data,
|
113 |
)
|
114 |
+
|
115 |
tasks = []
|
116 |
for aspect in aspects:
|
117 |
evaluate_responses = UltraFeedback(
|
|
|
122 |
tokenizer_id=MODEL,
|
123 |
api_key=os.environ["HF_TOKEN"],
|
124 |
generation_kwargs={{
|
125 |
+
"temperature": 0,
|
126 |
"max_new_tokens": 2048,
|
127 |
}},
|
128 |
output_mappings={{
|
|
|
133 |
}} if aspect in ["truthfulness", "helpfulness"] else {{"rationales": f"rationales_{{aspect}}", "ratings": f"ratings_{{aspect}}"}},
|
134 |
)
|
135 |
tasks.append(evaluate_responses)
|
136 |
+
|
137 |
combine_outputs = CombineOutputs()
|
138 |
+
|
139 |
load_the_dataset >> tasks >> combine_outputs
|
140 |
|
141 |
if __name__ == "__main__":
|
|
|
175 |
api_key=os.environ["HF_TOKEN"],
|
176 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
177 |
generation_kwargs={{
|
178 |
+
"temperature": 0,
|
179 |
"max_new_tokens": 2048,
|
180 |
}},
|
181 |
),
|
182 |
template=CUSTOM_TEMPLATE,
|
183 |
columns={columns}
|
184 |
)
|
185 |
+
|
186 |
load_the_dataset >> custom_evaluator
|
187 |
|
188 |
if __name__ == "__main__":
|
|
|
191 |
return code
|
192 |
|
193 |
|
194 |
+
def generate_pipeline_code(
|
195 |
+
repo_id,
|
196 |
+
aspects,
|
197 |
+
instruction_column,
|
198 |
+
response_columns,
|
199 |
+
prompt_template,
|
200 |
+
structured_output,
|
201 |
+
num_rows,
|
202 |
+
eval_type,
|
203 |
+
):
|
204 |
if repo_id is None:
|
205 |
subset = "default"
|
206 |
split = "train"
|
|
|
208 |
subset = get_dataset_config_names(repo_id)[0]
|
209 |
split = get_dataset_split_names(repo_id, subset)[0]
|
210 |
if eval_type == "ultrafeedback":
|
211 |
+
return generate_ultrafeedback_pipeline_code(
|
212 |
+
repo_id,
|
213 |
+
subset,
|
214 |
+
split,
|
215 |
+
aspects,
|
216 |
+
instruction_column,
|
217 |
+
response_columns,
|
218 |
+
num_rows,
|
219 |
+
)
|
220 |
+
return generate_custom_pipeline_code(
|
221 |
+
repo_id, subset, split, prompt_template, structured_output, num_rows
|
222 |
+
)
|