Spaces:
Running
Running
Update rag.py
Browse files
rag.py
CHANGED
@@ -18,6 +18,10 @@ groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
18 |
# Load models and dataset
|
19 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
|
|
|
|
|
|
|
|
|
21 |
# Load dataset (automatically using the path)
|
22 |
with open('dataset.json', 'r') as f:
|
23 |
dataset = json.load(f)
|
@@ -27,6 +31,32 @@ dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
|
27 |
dataset_answers = [item.get("response", "") for item in dataset]
|
28 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
try:
|
32 |
chat_completion = groq_client.chat.completions.create(
|
|
|
18 |
# Load models and dataset
|
19 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
|
21 |
+
# Configuration
|
22 |
+
HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo
|
23 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets
|
24 |
+
|
25 |
# Load dataset (automatically using the path)
|
26 |
with open('dataset.json', 'r') as f:
|
27 |
dataset = json.load(f)
|
|
|
31 |
dataset_answers = [item.get("response", "") for item in dataset]
|
32 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
33 |
|
34 |
+
# --- Unmatched Queries Handler ---
|
35 |
+
def manage_unmatched_queries(query: str):
|
36 |
+
"""Save unmatched queries to HF Dataset with error handling"""
|
37 |
+
try:
|
38 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
39 |
+
|
40 |
+
# Load existing dataset or create new
|
41 |
+
try:
|
42 |
+
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
|
43 |
+
df = ds["train"].to_pandas()
|
44 |
+
except:
|
45 |
+
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
|
46 |
+
|
47 |
+
# Append new query (avoid duplicates)
|
48 |
+
if query not in df["Query"].values:
|
49 |
+
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
|
50 |
+
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
51 |
+
|
52 |
+
# Push to Hub
|
53 |
+
updated_ds = Dataset.from_pandas(df)
|
54 |
+
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Failed to save query: {e}")
|
57 |
+
|
58 |
+
# --- Enhanced LLM Query ---
|
59 |
+
|
60 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
61 |
try:
|
62 |
chat_completion = groq_client.chat.completions.create(
|