midrees2806 commited on
Commit
0280e01
Β·
verified Β·
1 Parent(s): 8764592

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +32 -76
rag.py CHANGED
@@ -2,14 +2,10 @@ import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
  from datetime import datetime
5
- import requests
6
- from io import BytesIO
7
- from PIL import Image, ImageDraw, ImageFont
8
- import numpy as np
9
- from dotenv import load_dotenv
10
  import os
11
- from datasets import load_dataset, Dataset, DatasetDict
12
  import pandas as pd
 
 
13
 
14
  # Load environment variables
15
  load_dotenv()
@@ -17,21 +13,21 @@ load_dotenv()
17
  # Initialize Groq client
18
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
19
 
20
- # Load models and dataset
21
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
22
 
23
- # Configuration
24
- HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo
25
- HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets
26
 
27
- # Greeting words list
28
  GREETINGS = [
29
  "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
30
  "assalam o alaikum", "salam", "namaste", "hola", "bonjour", "hi there",
31
  "hey there", "greetings", "howdy"
32
  ]
33
 
34
- # --- Dataset Loading ---
35
  try:
36
  with open('dataset.json', 'r') as f:
37
  dataset = json.load(f)
@@ -46,31 +42,24 @@ dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
46
  dataset_answers = [item.get("response", "") for item in dataset]
47
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
48
 
49
- # --- Unmatched Queries Handler ---
50
  def manage_unmatched_queries(query: str):
51
- """Save unmatched queries to HF Dataset with error handling"""
52
  try:
53
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
54
-
55
- # Load existing dataset or create new
56
  try:
57
  ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
58
  df = ds["train"].to_pandas()
59
  except:
60
  df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
61
-
62
- # Append new query (avoid duplicates)
63
  if query not in df["Query"].values:
64
  new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
65
  df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
66
-
67
- # Push to Hub
68
  updated_ds = Dataset.from_pandas(df)
69
  updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
70
  except Exception as e:
71
  print(f"Failed to save query: {e}")
72
 
73
- # --- Enhanced LLM Query ---
74
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
75
  try:
76
  chat_completion = groq_client.chat.completions.create(
@@ -87,63 +76,35 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
87
  print(f"Error querying Groq API: {e}")
88
  return ""
89
 
90
- def handle_submit():
91
- user_input = input_field.value.strip()
92
-
93
- if not user_input:
94
- show_message("Please enter a question")
95
- return
96
-
97
- response = get_best_answer(user_input)
98
-
99
- if response.get('should_scroll', False):
100
- scroll_to_answer()
101
-
102
- display_response(response.get('response', ''))
103
-
104
  def get_best_answer(user_input):
105
- # 1. Check for empty input
106
  if not user_input.strip():
107
- return {"response": "Please enter a valid question.", "should_scroll": True}
108
-
109
  user_input_lower = user_input.lower().strip()
110
-
111
- # 2. Check for minimum word count (3 words)
112
  if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
113
- return {
114
- "response": "Please ask your question properly with at least 3 words.",
115
- "should_scroll": True
116
- }
117
-
118
- # 3. Handle greetings (regardless of word count)
119
  if any(greet in user_input_lower for greet in GREETINGS):
120
  greeting_response = query_groq_llm(
121
  f"You are an official assistant for University of Education Lahore. "
122
  f"Respond to this greeting in a friendly and professional manner: {user_input}"
123
  )
124
- return {
125
- "response": greeting_response if greeting_response else "Hello! How can I assist you today?",
126
- "should_scroll": True
127
- }
128
-
129
- # 4. Check if question is about fee
130
  if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
131
- return {
132
- "response": (
133
- "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
134
- "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
135
- "πŸ”— https://ue.edu.pk/allfeestructure.php"
136
- ),
137
- "should_scroll": True
138
- }
139
-
140
- # πŸ” Continue with normal similarity-based logic
141
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
142
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
143
  best_match_idx = similarities.argmax().item()
144
  best_score = similarities[best_match_idx].item()
145
 
146
- # Save unmatched queries (threshold = 0.65)
147
  if best_score < 0.65:
148
  manage_unmatched_queries(user_input)
149
 
@@ -165,17 +126,12 @@ def get_best_answer(user_input):
165
  if llm_response:
166
  for marker in ["Improved Answer:", "Official Answer:"]:
167
  if marker in llm_response:
168
- response = llm_response.split(marker)[-1].strip()
169
- break
170
- else:
171
- response = llm_response
172
  else:
173
- response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
174
- πŸ“ž +92-42-99262231-33
175
- βœ‰οΈ [email protected]
176
- 🌐 ue.edu.pk"""
177
-
178
- return {
179
- "response": response,
180
- "should_scroll": True
181
- }
 
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
  from datetime import datetime
 
 
 
 
 
5
  import os
 
6
  import pandas as pd
7
+ from datasets import load_dataset, Dataset
8
+ from dotenv import load_dotenv
9
 
10
  # Load environment variables
11
  load_dotenv()
 
13
  # Initialize Groq client
14
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
15
 
16
+ # Load similarity model
17
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
18
 
19
+ # Config
20
+ HF_DATASET_REPO = "midrees2806/unmatched_queries"
21
+ HF_TOKEN = os.getenv("HF_TOKEN")
22
 
23
+ # Greeting list
24
  GREETINGS = [
25
  "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
26
  "assalam o alaikum", "salam", "namaste", "hola", "bonjour", "hi there",
27
  "hey there", "greetings", "howdy"
28
  ]
29
 
30
+ # Load local dataset
31
  try:
32
  with open('dataset.json', 'r') as f:
33
  dataset = json.load(f)
 
42
  dataset_answers = [item.get("response", "") for item in dataset]
43
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
44
 
45
+ # Save unmatched queries to Hugging Face
46
  def manage_unmatched_queries(query: str):
 
47
  try:
48
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
 
 
49
  try:
50
  ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
51
  df = ds["train"].to_pandas()
52
  except:
53
  df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
 
 
54
  if query not in df["Query"].values:
55
  new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
56
  df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
 
 
57
  updated_ds = Dataset.from_pandas(df)
58
  updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
59
  except Exception as e:
60
  print(f"Failed to save query: {e}")
61
 
62
+ # Query Groq LLM
63
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
64
  try:
65
  chat_completion = groq_client.chat.completions.create(
 
76
  print(f"Error querying Groq API: {e}")
77
  return ""
78
 
79
+ # Main logic function to be called from Gradio
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  def get_best_answer(user_input):
 
81
  if not user_input.strip():
82
+ return "Please enter a valid question."
83
+
84
  user_input_lower = user_input.lower().strip()
85
+
 
86
  if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
87
+ return "Please ask your question properly with at least 3 words."
88
+
 
 
 
 
89
  if any(greet in user_input_lower for greet in GREETINGS):
90
  greeting_response = query_groq_llm(
91
  f"You are an official assistant for University of Education Lahore. "
92
  f"Respond to this greeting in a friendly and professional manner: {user_input}"
93
  )
94
+ return greeting_response if greeting_response else "Hello! How can I assist you today?"
95
+
 
 
 
 
96
  if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
97
+ return (
98
+ "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
99
+ "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
100
+ "πŸ”— https://ue.edu.pk/allfeestructure.php"
101
+ )
102
+
 
 
 
 
103
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
104
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
105
  best_match_idx = similarities.argmax().item()
106
  best_score = similarities[best_match_idx].item()
107
 
 
108
  if best_score < 0.65:
109
  manage_unmatched_queries(user_input)
110
 
 
126
  if llm_response:
127
  for marker in ["Improved Answer:", "Official Answer:"]:
128
  if marker in llm_response:
129
+ return llm_response.split(marker)[-1].strip()
130
+ return llm_response
 
 
131
  else:
132
+ return dataset_answers[best_match_idx] if best_score >= 0.65 else (
133
+ "For official information:\n"
134
+ "πŸ“ž +92-42-99262231-33\n"
135
+ "βœ‰οΈ info@ue.edu.pk\n"
136
+ "🌐 https://ue.edu.pk"
137
+ )