Spaces:
Running
Running
Update rag.py
Browse files
rag.py
CHANGED
@@ -43,8 +43,8 @@ except Exception as e:
|
|
43 |
print(f"Error loading dataset: {e}")
|
44 |
dataset = []
|
45 |
|
46 |
-
# Precompute embeddings
|
47 |
-
dataset_questions = [item.get("Question", "")
|
48 |
dataset_answers = [item.get("Answer", "") for item in dataset]
|
49 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
50 |
|
@@ -82,7 +82,7 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
|
82 |
print(f"Error querying Groq API: {e}")
|
83 |
return ""
|
84 |
|
85 |
-
# Main logic function to be called from Gradio
|
86 |
def get_best_answer(user_input):
|
87 |
if not user_input.strip():
|
88 |
return "Please enter a valid question."
|
@@ -106,7 +106,7 @@ def get_best_answer(user_input):
|
|
106 |
"π https://ue.edu.pk/allfeestructure.php"
|
107 |
)
|
108 |
|
109 |
-
# Normalize
|
110 |
normalized_input = normalize_input(user_input_lower)
|
111 |
user_embedding = similarity_model.encode(normalized_input, convert_to_tensor=True)
|
112 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
|
|
43 |
print(f"Error loading dataset: {e}")
|
44 |
dataset = []
|
45 |
|
46 |
+
# Precompute normalized dataset embeddings
|
47 |
+
dataset_questions = [normalize_input(item.get("Question", "")) for item in dataset]
|
48 |
dataset_answers = [item.get("Answer", "") for item in dataset]
|
49 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
50 |
|
|
|
82 |
print(f"Error querying Groq API: {e}")
|
83 |
return ""
|
84 |
|
85 |
+
# Main logic function to be called from Gradio or elsewhere
|
86 |
def get_best_answer(user_input):
|
87 |
if not user_input.strip():
|
88 |
return "Please enter a valid question."
|
|
|
106 |
"π https://ue.edu.pk/allfeestructure.php"
|
107 |
)
|
108 |
|
109 |
+
# Normalize input for similarity
|
110 |
normalized_input = normalize_input(user_input_lower)
|
111 |
user_embedding = similarity_model.encode(normalized_input, convert_to_tensor=True)
|
112 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|