midrees2806 commited on
Commit
038c54c
Β·
verified Β·
1 Parent(s): 8029216

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +4 -4
rag.py CHANGED
@@ -43,8 +43,8 @@ except Exception as e:
43
  print(f"Error loading dataset: {e}")
44
  dataset = []
45
 
46
- # Precompute embeddings
47
- dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
48
  dataset_answers = [item.get("Answer", "") for item in dataset]
49
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
50
 
@@ -82,7 +82,7 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
82
  print(f"Error querying Groq API: {e}")
83
  return ""
84
 
85
- # Main logic function to be called from Gradio
86
  def get_best_answer(user_input):
87
  if not user_input.strip():
88
  return "Please enter a valid question."
@@ -106,7 +106,7 @@ def get_best_answer(user_input):
106
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
107
  )
108
 
109
- # Normalize only for similarity
110
  normalized_input = normalize_input(user_input_lower)
111
  user_embedding = similarity_model.encode(normalized_input, convert_to_tensor=True)
112
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
 
43
  print(f"Error loading dataset: {e}")
44
  dataset = []
45
 
46
+ # Precompute normalized dataset embeddings
47
+ dataset_questions = [normalize_input(item.get("Question", "")) for item in dataset]
48
  dataset_answers = [item.get("Answer", "") for item in dataset]
49
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
50
 
 
82
  print(f"Error querying Groq API: {e}")
83
  return ""
84
 
85
+ # Main logic function to be called from Gradio or elsewhere
86
  def get_best_answer(user_input):
87
  if not user_input.strip():
88
  return "Please enter a valid question."
 
106
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
107
  )
108
 
109
+ # Normalize input for similarity
110
  normalized_input = normalize_input(user_input_lower)
111
  user_embedding = similarity_model.encode(normalized_input, convert_to_tensor=True)
112
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]