Spaces:
Running
Running
Update rag.py
Browse files
rag.py
CHANGED
@@ -8,8 +8,6 @@ from PIL import Image, ImageDraw, ImageFont
|
|
8 |
import numpy as np
|
9 |
from dotenv import load_dotenv
|
10 |
import os
|
11 |
-
import pandas as pd
|
12 |
-
from datasets import load_dataset, Dataset
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
@@ -29,34 +27,6 @@ dataset_questions = [item.get("Question", "").lower().strip() for item in datase
|
|
29 |
dataset_answers = [item.get("Answer", "") for item in dataset]
|
30 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
31 |
|
32 |
-
# Greeting list
|
33 |
-
GREETINGS = [
|
34 |
-
"hi", "hello", "hey", "good morning", "good afternoon", "good evening",
|
35 |
-
"assalam o alaikum", "salam", "aoa", "hi there",
|
36 |
-
"hey there", "greetings"
|
37 |
-
]
|
38 |
-
|
39 |
-
# Hugging Face config
|
40 |
-
HF_DATASET_REPO = "midrees2806/unmatched_queries"
|
41 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
42 |
-
|
43 |
-
# Save unmatched queries to Hugging Face
|
44 |
-
def manage_unmatched_queries(query: str):
|
45 |
-
try:
|
46 |
-
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
47 |
-
try:
|
48 |
-
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
|
49 |
-
df = ds["train"].to_pandas()
|
50 |
-
except:
|
51 |
-
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
|
52 |
-
if query not in df["Query"].values:
|
53 |
-
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
|
54 |
-
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
55 |
-
updated_ds = Dataset.from_pandas(df)
|
56 |
-
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Failed to save query: {e}")
|
59 |
-
|
60 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
61 |
try:
|
62 |
chat_completion = groq_client.chat.completions.create(
|
@@ -76,16 +46,8 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
|
76 |
def get_best_answer(user_input):
|
77 |
user_input_lower = user_input.lower().strip()
|
78 |
|
79 |
-
# ๐ Greeting functionality
|
80 |
-
if any(greet in user_input_lower for greet in GREETINGS):
|
81 |
-
greeting_response = query_groq_llm(
|
82 |
-
f"You are an official assistant for University of Education Lahore. "
|
83 |
-
f"Respond to this greeting in a friendly and professional manner: {user_input}"
|
84 |
-
)
|
85 |
-
return greeting_response if greeting_response else "Hello! How can I assist you today?"
|
86 |
-
|
87 |
# ๐ Check if question is about fee
|
88 |
-
if any(keyword in user_input_lower for keyword in ["
|
89 |
return (
|
90 |
"๐ฐ For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
91 |
"Youโll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
@@ -98,10 +60,6 @@ def get_best_answer(user_input):
|
|
98 |
best_match_idx = similarities.argmax().item()
|
99 |
best_score = similarities[best_match_idx].item()
|
100 |
|
101 |
-
# ๐ Save unmatched query if no close match
|
102 |
-
if best_score < 0.65:
|
103 |
-
manage_unmatched_queries(user_input)
|
104 |
-
|
105 |
if best_score >= 0.65:
|
106 |
original_answer = dataset_answers[best_match_idx]
|
107 |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
|
|
8 |
import numpy as np
|
9 |
from dotenv import load_dotenv
|
10 |
import os
|
|
|
|
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
|
|
27 |
dataset_answers = [item.get("Answer", "") for item in dataset]
|
28 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
try:
|
32 |
chat_completion = groq_client.chat.completions.create(
|
|
|
46 |
def get_best_answer(user_input):
|
47 |
user_input_lower = user_input.lower().strip()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# ๐ Check if question is about fee
|
50 |
+
if any(keyword in user_input_lower for keyword in ["fee", "fees", "charges", "semester fee"]):
|
51 |
return (
|
52 |
"๐ฐ For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
53 |
"Youโll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
|
|
60 |
best_match_idx = similarities.argmax().item()
|
61 |
best_score = similarities[best_match_idx].item()
|
62 |
|
|
|
|
|
|
|
|
|
63 |
if best_score >= 0.65:
|
64 |
original_answer = dataset_answers[best_match_idx]
|
65 |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|