Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from groq import Groq
|
4 |
+
import datetime
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import numpy as np
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Initialize Groq client
|
16 |
+
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
17 |
+
|
18 |
+
# Load models and dataset
|
19 |
+
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
# Load dataset (automatically using the path)
|
22 |
+
with open('dataset.json', 'r') as f:
|
23 |
+
dataset = json.load(f)
|
24 |
+
|
25 |
+
# Precompute embeddings
|
26 |
+
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
27 |
+
dataset_answers = [item.get("response", "") for item in dataset]
|
28 |
+
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
29 |
+
|
30 |
+
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
+
try:
|
32 |
+
chat_completion = groq_client.chat.completions.create(
|
33 |
+
messages=[{
|
34 |
+
"role": "user",
|
35 |
+
"content": prompt
|
36 |
+
}],
|
37 |
+
model=model_name,
|
38 |
+
temperature=0.7,
|
39 |
+
max_tokens=500
|
40 |
+
)
|
41 |
+
return chat_completion.choices[0].message.content.strip()
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error querying Groq API: {e}")
|
44 |
+
return ""
|
45 |
+
|
46 |
+
def get_best_answer(user_input):
|
47 |
+
user_embedding = similarity_model.encode(user_input.lower().strip(), convert_to_tensor=True)
|
48 |
+
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
49 |
+
best_match_idx = similarities.argmax().item()
|
50 |
+
best_score = similarities[best_match_idx].item()
|
51 |
+
|
52 |
+
if best_score >= 0.65:
|
53 |
+
original_answer = dataset_answers[best_match_idx]
|
54 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
55 |
+
Question: {user_input}
|
56 |
+
Original Answer: {original_answer}
|
57 |
+
Improved Answer:"""
|
58 |
+
else:
|
59 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
|
60 |
+
Include relevant details about university policies.
|
61 |
+
If unsure, direct to official channels.
|
62 |
+
|
63 |
+
Question: {user_input}
|
64 |
+
|
65 |
+
Official Answer:"""
|
66 |
+
|
67 |
+
llm_response = query_groq_llm(prompt)
|
68 |
+
|
69 |
+
if llm_response:
|
70 |
+
for marker in ["Improved Answer:", "Official Answer:"]:
|
71 |
+
if marker in llm_response:
|
72 |
+
response = llm_response.split(marker)[-1].strip()
|
73 |
+
break
|
74 |
+
else:
|
75 |
+
response = llm_response
|
76 |
+
else:
|
77 |
+
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
|
78 |
+
π +92-42-99262231-33
|
79 |
+
βοΈ [email protected]
|
80 |
+
π ue.edu.pk"""
|
81 |
+
|
82 |
+
return response
|