midrees2806 commited on
Commit
7787e5b
·
verified ·
1 Parent(s): c8676ae

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +5 -5
rag.py CHANGED
@@ -31,15 +31,15 @@ GREETINGS = [
31
  try:
32
  with open('dataset.json', 'r') as f:
33
  dataset = json.load(f)
34
- if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
35
  raise ValueError("Invalid dataset structure")
36
  except Exception as e:
37
  print(f"Error loading dataset: {e}")
38
  dataset = []
39
 
40
  # Precompute embeddings
41
- dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
42
- dataset_answers = [item.get("response", "") for item in dataset]
43
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
44
 
45
  # Save unmatched queries to Hugging Face
@@ -110,7 +110,7 @@ def get_best_answer(user_input):
110
 
111
  if best_score >= 0.65:
112
  original_answer = dataset_answers[best_match_idx]
113
- prompt = f"""You are an official assistant for the University of Education Lahore.
114
 
115
  Rephrase the following official answer clearly and professionally.
116
  Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
@@ -125,7 +125,7 @@ DO NOT add any new or extra information. ONLY rephrase and improve the clarity a
125
  ### Rephrased Answer:
126
  """
127
  else:
128
- prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
129
  Include relevant details about university policies.
130
  If unsure, direct to official channels.
131
 
 
31
  try:
32
  with open('dataset.json', 'r') as f:
33
  dataset = json.load(f)
34
+ if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
35
  raise ValueError("Invalid dataset structure")
36
  except Exception as e:
37
  print(f"Error loading dataset: {e}")
38
  dataset = []
39
 
40
  # Precompute embeddings
41
+ dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
42
+ dataset_answers = [item.get("Answer", "") for item in dataset]
43
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
44
 
45
  # Save unmatched queries to Hugging Face
 
110
 
111
  if best_score >= 0.65:
112
  original_answer = dataset_answers[best_match_idx]
113
+ prompt = f"""Name is UOE AI Assistant! You are an official assistant for the University of Education Lahore.
114
 
115
  Rephrase the following official answer clearly and professionally.
116
  Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
 
125
  ### Rephrased Answer:
126
  """
127
  else:
128
+ prompt = f"""Name is UOE AI Assistant! As an official assistant for University of Education Lahore, provide a helpful response:
129
  Include relevant details about university policies.
130
  If unsure, direct to official channels.
131