Spaces:
Running
Running
Update rag.py
Browse files
rag.py
CHANGED
@@ -7,8 +7,6 @@ from io import BytesIO
|
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
import numpy as np
|
9 |
from dotenv import load_dotenv
|
10 |
-
from datasets import load_dataset, Dataset
|
11 |
-
import pandas as pd
|
12 |
import os
|
13 |
|
14 |
# Load environment variables
|
@@ -20,16 +18,7 @@ groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
20 |
# Load models and dataset
|
21 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
22 |
|
23 |
-
#
|
24 |
-
HF_DATASET_REPO = "midrees2806/unmatched_queries"
|
25 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
26 |
-
GREETINGS = [
|
27 |
-
"hi", "hello", "hey", "good morning", "good afternoon", "good evening",
|
28 |
-
"assalam o alaikum", "salam", "aoa", "hi there",
|
29 |
-
"hey there", "greetings"
|
30 |
-
]
|
31 |
-
|
32 |
-
# Load dataset
|
33 |
with open('dataset.json', 'r') as f:
|
34 |
dataset = json.load(f)
|
35 |
|
@@ -38,24 +27,6 @@ dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
|
38 |
dataset_answers = [item.get("response", "") for item in dataset]
|
39 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
40 |
|
41 |
-
# Save unmatched queries to Hugging Face
|
42 |
-
def manage_unmatched_queries(query: str):
|
43 |
-
try:
|
44 |
-
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
45 |
-
try:
|
46 |
-
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
|
47 |
-
df = ds["train"].to_pandas()
|
48 |
-
except:
|
49 |
-
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
|
50 |
-
if query not in df["Query"].values:
|
51 |
-
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
|
52 |
-
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
53 |
-
updated_ds = Dataset.from_pandas(df)
|
54 |
-
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Failed to save query: {e}")
|
57 |
-
|
58 |
-
# Query Groq LLM
|
59 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
60 |
try:
|
61 |
chat_completion = groq_client.chat.completions.create(
|
@@ -72,77 +43,49 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
|
72 |
print(f"Error querying Groq API: {e}")
|
73 |
return ""
|
74 |
|
75 |
-
# Main logic function
|
76 |
def get_best_answer(user_input):
|
77 |
-
if not user_input.strip():
|
78 |
-
return "Please enter a valid question."
|
79 |
-
|
80 |
user_input_lower = user_input.lower().strip()
|
81 |
|
82 |
-
#
|
83 |
-
if any(
|
84 |
-
greeting_response = query_groq_llm(
|
85 |
-
f"You are an official assistant for University of Education Lahore. "
|
86 |
-
f"Respond to this greeting in a friendly and professional manner: {user_input}"
|
87 |
-
)
|
88 |
-
return greeting_response if greeting_response else "Hello! How can I assist you today?"
|
89 |
-
|
90 |
-
# π° Fee-specific shortcut
|
91 |
-
if any(keyword in user_input_lower for keyword in ["semester fee", "semester fees"]):
|
92 |
return (
|
93 |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
94 |
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
95 |
"π https://ue.edu.pk/allfeestructure.php"
|
96 |
)
|
97 |
|
98 |
-
# π
|
99 |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
100 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
101 |
best_match_idx = similarities.argmax().item()
|
102 |
best_score = similarities[best_match_idx].item()
|
103 |
|
104 |
-
if best_score < 0.65:
|
105 |
-
manage_unmatched_queries(user_input)
|
106 |
-
|
107 |
-
# π§ Use original dataset answer if matched well
|
108 |
if best_score >= 0.65:
|
109 |
original_answer = dataset_answers[best_match_idx]
|
110 |
-
prompt = f"""
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.
|
115 |
-
|
116 |
-
### Question:
|
117 |
-
{user_input}
|
118 |
-
|
119 |
-
### Original Answer:
|
120 |
-
{original_answer}
|
121 |
-
|
122 |
-
### Rephrased Answer:
|
123 |
-
"""
|
124 |
else:
|
125 |
-
prompt = f"""
|
126 |
-
Include relevant details about university policies.
|
127 |
-
If unsure, direct to official channels.
|
128 |
-
|
129 |
-
|
130 |
-
{user_input}
|
131 |
-
|
132 |
-
### Official Answer:
|
133 |
-
"""
|
134 |
|
135 |
llm_response = query_groq_llm(prompt)
|
136 |
|
137 |
if llm_response:
|
138 |
-
for marker in ["Improved Answer:", "Official Answer:"
|
139 |
if marker in llm_response:
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
else:
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
import numpy as np
|
9 |
from dotenv import load_dotenv
|
|
|
|
|
10 |
import os
|
11 |
|
12 |
# Load environment variables
|
|
|
18 |
# Load models and dataset
|
19 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
|
21 |
+
# Load dataset (automatically using the path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with open('dataset.json', 'r') as f:
|
23 |
dataset = json.load(f)
|
24 |
|
|
|
27 |
dataset_answers = [item.get("response", "") for item in dataset]
|
28 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
try:
|
32 |
chat_completion = groq_client.chat.completions.create(
|
|
|
43 |
print(f"Error querying Groq API: {e}")
|
44 |
return ""
|
45 |
|
|
|
46 |
def get_best_answer(user_input):
|
|
|
|
|
|
|
47 |
user_input_lower = user_input.lower().strip()
|
48 |
|
49 |
+
# π Check if question is about fee
|
50 |
+
if any(keyword in user_input_lower for keyword in ["semester fee","semester fees"]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return (
|
52 |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
53 |
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
54 |
"π https://ue.edu.pk/allfeestructure.php"
|
55 |
)
|
56 |
|
57 |
+
# π Continue with normal similarity-based logic
|
58 |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
59 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
60 |
best_match_idx = similarities.argmax().item()
|
61 |
best_score = similarities[best_match_idx].item()
|
62 |
|
|
|
|
|
|
|
|
|
63 |
if best_score >= 0.65:
|
64 |
original_answer = dataset_answers[best_match_idx]
|
65 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
66 |
+
Question: {user_input}
|
67 |
+
Original Answer: {original_answer}
|
68 |
+
Improved Answer:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
else:
|
70 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
|
71 |
+
Include relevant details about university policies.
|
72 |
+
If unsure, direct to official channels.
|
73 |
+
Question: {user_input}
|
74 |
+
Official Answer:"""
|
|
|
|
|
|
|
|
|
75 |
|
76 |
llm_response = query_groq_llm(prompt)
|
77 |
|
78 |
if llm_response:
|
79 |
+
for marker in ["Improved Answer:", "Official Answer:"]:
|
80 |
if marker in llm_response:
|
81 |
+
response = llm_response.split(marker)[-1].strip()
|
82 |
+
break
|
83 |
+
else:
|
84 |
+
response = llm_response
|
85 |
else:
|
86 |
+
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
|
87 |
+
π +92-42-99262231-33
|
88 |
+
βοΈ [email protected]
|
89 |
+
π ue.edu.pk"""
|
90 |
+
|
91 |
+
return response
|