midrees2806 commited on
Commit
c54cf3b
Β·
verified Β·
1 Parent(s): 06f5689

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +36 -40
rag.py CHANGED
@@ -1,11 +1,15 @@
1
  import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
- from datetime import datetime
 
 
 
 
 
5
  import os
6
  import pandas as pd
7
  from datasets import load_dataset, Dataset
8
- from dotenv import load_dotenv
9
 
10
  # Load environment variables
11
  load_dotenv()
@@ -13,12 +17,17 @@ load_dotenv()
13
  # Initialize Groq client
14
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
15
 
16
- # Load similarity model
17
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
18
 
19
- # Config
20
- HF_DATASET_REPO = "midrees2806/unmatched_queries"
21
- HF_TOKEN = os.getenv("HF_TOKEN")
 
 
 
 
 
22
 
23
  # Greeting list
24
  GREETINGS = [
@@ -27,25 +36,14 @@ GREETINGS = [
27
  "hey there", "greetings"
28
  ]
29
 
30
- # Load local dataset
31
- try:
32
- with open('dataset.json', 'r') as f:
33
- dataset = json.load(f)
34
- if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
35
- raise ValueError("Invalid dataset structure")
36
- except Exception as e:
37
- print(f"Error loading dataset: {e}")
38
- dataset = []
39
-
40
- # Precompute embeddings
41
- dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
42
- dataset_answers = [item.get("Answer", "") for item in dataset]
43
- dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
44
 
45
  # Save unmatched queries to Hugging Face
46
  def manage_unmatched_queries(query: str):
47
  try:
48
- timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
49
  try:
50
  ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
51
  df = ds["train"].to_pandas()
@@ -59,7 +57,6 @@ def manage_unmatched_queries(query: str):
59
  except Exception as e:
60
  print(f"Failed to save query: {e}")
61
 
62
- # Query Groq LLM
63
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
64
  try:
65
  chat_completion = groq_client.chat.completions.create(
@@ -76,16 +73,10 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
76
  print(f"Error querying Groq API: {e}")
77
  return ""
78
 
79
- # Main logic function to be called from Gradio
80
  def get_best_answer(user_input):
81
- if not user_input.strip():
82
- return "Please enter a valid question."
83
-
84
  user_input_lower = user_input.lower().strip()
85
 
86
- if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
87
- return "Please ask your question properly with at least 3 words."
88
-
89
  if any(greet in user_input_lower for greet in GREETINGS):
90
  greeting_response = query_groq_llm(
91
  f"You are an official assistant for University of Education Lahore. "
@@ -93,18 +84,21 @@ def get_best_answer(user_input):
93
  )
94
  return greeting_response if greeting_response else "Hello! How can I assist you today?"
95
 
96
- if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
 
97
  return (
98
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
99
- "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
100
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
101
  )
102
 
 
103
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
104
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
105
  best_match_idx = similarities.argmax().item()
106
  best_score = similarities[best_match_idx].item()
107
 
 
108
  if best_score < 0.65:
109
  manage_unmatched_queries(user_input)
110
 
@@ -124,14 +118,16 @@ def get_best_answer(user_input):
124
  llm_response = query_groq_llm(prompt)
125
 
126
  if llm_response:
127
- for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
128
  if marker in llm_response:
129
- return llm_response.split(marker)[-1].strip()
130
- return llm_response
 
 
131
  else:
132
- return dataset_answers[best_match_idx] if best_score >= 0.65 else (
133
- "For official information:\n"
134
- "πŸ“ž +92-42-99262231-33\n"
135
- "βœ‰οΈ info@ue.edu.pk\n"
136
- "🌐 https://ue.edu.pk"
137
- )
 
1
  import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
+ import datetime
5
+ import requests
6
+ from io import BytesIO
7
+ from PIL import Image, ImageDraw, ImageFont
8
+ import numpy as np
9
+ from dotenv import load_dotenv
10
  import os
11
  import pandas as pd
12
  from datasets import load_dataset, Dataset
 
13
 
14
  # Load environment variables
15
  load_dotenv()
 
17
  # Initialize Groq client
18
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
19
 
20
+ # Load models and dataset
21
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
22
 
23
+ # Load dataset (automatically using the path)
24
+ with open('dataset.json', 'r') as f:
25
+ dataset = json.load(f)
26
+
27
+ # Precompute embeddings
28
+ dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
29
+ dataset_answers = [item.get("response", "") for item in dataset]
30
+ dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
31
 
32
  # Greeting list
33
  GREETINGS = [
 
36
  "hey there", "greetings"
37
  ]
38
 
39
+ # Hugging Face config
40
+ HF_DATASET_REPO = "midrees2806/unmatched_queries"
41
+ HF_TOKEN = os.getenv("HF_TOKEN")
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  # Save unmatched queries to Hugging Face
44
  def manage_unmatched_queries(query: str):
45
  try:
46
+ timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
47
  try:
48
  ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
49
  df = ds["train"].to_pandas()
 
57
  except Exception as e:
58
  print(f"Failed to save query: {e}")
59
 
 
60
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
61
  try:
62
  chat_completion = groq_client.chat.completions.create(
 
73
  print(f"Error querying Groq API: {e}")
74
  return ""
75
 
 
76
  def get_best_answer(user_input):
 
 
 
77
  user_input_lower = user_input.lower().strip()
78
 
79
+ # πŸ‘‰ Greeting functionality
 
 
80
  if any(greet in user_input_lower for greet in GREETINGS):
81
  greeting_response = query_groq_llm(
82
  f"You are an official assistant for University of Education Lahore. "
 
84
  )
85
  return greeting_response if greeting_response else "Hello! How can I assist you today?"
86
 
87
+ # πŸ‘‰ Check if question is about fee
88
+ if any(keyword in user_input_lower for keyword in ["semester fee", "semester fees"]):
89
  return (
90
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
91
+ "You’ll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
92
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
93
  )
94
 
95
+ # πŸ” Continue with normal similarity-based logic
96
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
97
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
98
  best_match_idx = similarities.argmax().item()
99
  best_score = similarities[best_match_idx].item()
100
 
101
+ # πŸ‘‰ Save unmatched query if no close match
102
  if best_score < 0.65:
103
  manage_unmatched_queries(user_input)
104
 
 
118
  llm_response = query_groq_llm(prompt)
119
 
120
  if llm_response:
121
+ for marker in ["Improved Answer:", "Official Answer:"]:
122
  if marker in llm_response:
123
+ response = llm_response.split(marker)[-1].strip()
124
+ break
125
+ else:
126
+ response = llm_response
127
  else:
128
+ response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
129
+ πŸ“ž +92-42-99262231-33
130
+ βœ‰οΈ [email protected]
131
+ 🌐 ue.edu.pk"""
132
+
133
+ return response