midrees2806 commited on
Commit
dba6f87
Β·
verified Β·
1 Parent(s): 9e69b9a

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +51 -37
rag.py CHANGED
@@ -2,14 +2,10 @@ import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
  from datetime import datetime
5
- import requests
6
- from datasets import load_dataset, Dataset
7
- from io import BytesIO
8
- from PIL import Image, ImageDraw, ImageFont
9
- import numpy as np
10
- from dotenv import load_dotenv
11
  import os
12
  import pandas as pd
 
 
13
 
14
  # Load environment variables
15
  load_dotenv()
@@ -17,16 +13,22 @@ load_dotenv()
17
  # Initialize Groq client
18
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
19
 
20
- # Load models and dataset
21
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
22
 
23
  # Config
24
  HF_DATASET_REPO = "midrees2806/unmatched_queries"
25
  HF_TOKEN = os.getenv("HF_TOKEN")
26
 
27
- # Load dataset (automatically using the path)
28
- with open('dataset.json', 'r') as f:
29
- dataset = json.load(f)
 
 
 
 
 
 
30
 
31
  # Precompute embeddings
32
  dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
@@ -50,6 +52,7 @@ def manage_unmatched_queries(query: str):
50
  except Exception as e:
51
  print(f"Failed to save query: {e}")
52
 
 
53
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
54
  try:
55
  chat_completion = groq_client.chat.completions.create(
@@ -66,24 +69,23 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
66
  print(f"Error querying Groq API: {e}")
67
  return ""
68
 
 
69
  def get_best_answer(user_input):
70
-
71
  if not user_input.strip():
72
  return "Please enter a valid question."
 
73
  user_input_lower = user_input.lower().strip()
74
 
75
- if len(user_input_lower.split()) < 3:
76
  return "Please ask your question properly with at least 3 words."
77
 
78
- # πŸ‘‰ Check if question is about fee
79
- if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure"]):
80
  return (
81
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
82
- "You’ll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
83
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
84
  )
85
 
86
- # πŸ” Continue with normal similarity-based logic
87
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
88
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
89
  best_match_idx = similarities.argmax().item()
@@ -91,33 +93,45 @@ def get_best_answer(user_input):
91
 
92
  if best_score < 0.65:
93
  manage_unmatched_queries(user_input)
94
-
95
  if best_score >= 0.65:
96
  original_answer = dataset_answers[best_match_idx]
97
- prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
98
- Question: {user_input}
99
- Original Answer: {original_answer}
100
- Improved Answer:"""
 
 
 
 
 
 
 
 
 
 
101
  else:
102
- prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
103
- Include relevant details about university policies.
104
- If unsure, direct to official channels.
105
- Question: {user_input}
106
- Official Answer:"""
 
 
 
 
107
 
108
  llm_response = query_groq_llm(prompt)
109
 
110
  if llm_response:
111
- for marker in ["Improved Answer:", "Official Answer:"]:
112
  if marker in llm_response:
113
- response = llm_response.split(marker)[-1].strip()
114
- break
115
- else:
116
- response = llm_response
117
  else:
118
- response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
119
- πŸ“ž +92-42-99262231-33
120
- βœ‰οΈ [email protected]
121
- 🌐 ue.edu.pk"""
122
-
123
- return response
 
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
  from datetime import datetime
 
 
 
 
 
 
5
  import os
6
  import pandas as pd
7
+ from datasets import load_dataset, Dataset
8
+ from dotenv import load_dotenv
9
 
10
  # Load environment variables
11
  load_dotenv()
 
13
  # Initialize Groq client
14
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
15
 
16
+ # Load similarity model
17
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
18
 
19
  # Config
20
  HF_DATASET_REPO = "midrees2806/unmatched_queries"
21
  HF_TOKEN = os.getenv("HF_TOKEN")
22
 
23
+ # Load local dataset
24
+ try:
25
+ with open('dataset.json', 'r') as f:
26
+ dataset = json.load(f)
27
+ if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
28
+ raise ValueError("Invalid dataset structure")
29
+ except Exception as e:
30
+ print(f"Error loading dataset: {e}")
31
+ dataset = []
32
 
33
  # Precompute embeddings
34
  dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
 
52
  except Exception as e:
53
  print(f"Failed to save query: {e}")
54
 
55
+ # Query Groq LLM
56
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
57
  try:
58
  chat_completion = groq_client.chat.completions.create(
 
69
  print(f"Error querying Groq API: {e}")
70
  return ""
71
 
72
+ # Main logic function to be called from Gradio
73
  def get_best_answer(user_input):
 
74
  if not user_input.strip():
75
  return "Please enter a valid question."
76
+
77
  user_input_lower = user_input.lower().strip()
78
 
79
+ if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
80
  return "Please ask your question properly with at least 3 words."
81
 
82
+ if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
 
83
  return (
84
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
85
+ "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
86
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
87
  )
88
 
 
89
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
90
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
91
  best_match_idx = similarities.argmax().item()
 
93
 
94
  if best_score < 0.65:
95
  manage_unmatched_queries(user_input)
96
+
97
  if best_score >= 0.65:
98
  original_answer = dataset_answers[best_match_idx]
99
+ prompt = f"""Name is UOE AI Assistant! You are an official assistant for the University of Education Lahore.
100
+
101
+ Rephrase the following official answer clearly and professionally.
102
+ Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
103
+ DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.
104
+
105
+ ### Question:
106
+ {user_input}
107
+
108
+ ### Original Answer:
109
+ {original_answer}
110
+
111
+ ### Rephrased Answer:
112
+ """
113
  else:
114
+ prompt = f"""Name is UOE AI Assistant! As an official assistant for University of Education Lahore, provide a helpful response:
115
+ Include relevant details about university policies.
116
+ If unsure, direct to official channels.
117
+
118
+ ### Question:
119
+ {user_input}
120
+
121
+ ### Official Answer:
122
+ """
123
 
124
  llm_response = query_groq_llm(prompt)
125
 
126
  if llm_response:
127
+ for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
128
  if marker in llm_response:
129
+ return llm_response.split(marker)[-1].strip()
130
+ return llm_response
 
 
131
  else:
132
+ return dataset_answers[best_match_idx] if best_score >= 0.65 else (
133
+ "For official information:\n"
134
+ "πŸ“ž +92-42-99262231-33\n"
135
+ "βœ‰οΈ info@ue.edu.pk\n"
136
+ "🌐 https://ue.edu.pk"
137
+ )