import json from sentence_transformers import SentenceTransformer, util from groq import Groq import datetime import requests from io import BytesIO from PIL import Image, ImageDraw, ImageFont import numpy as np from dotenv import load_dotenv from datasets import load_dataset, Dataset import pandas as pd import os # Load environment variables load_dotenv() # Initialize Groq client groq_client = Groq(api_key=os.getenv("GROQ_API_KEY")) # Load models and dataset similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') # Constants HF_DATASET_REPO = "midrees2806/unmatched_queries" HF_TOKEN = os.getenv("HF_TOKEN") GREETINGS = [ "hi", "hello", "hey", "good morning", "good afternoon", "good evening", "assalam o alaikum", "salam", "aoa", "hi there", "hey there", "greetings" ] # Load dataset with open('dataset.json', 'r') as f: dataset = json.load(f) # Precompute embeddings dataset_questions = [item.get("input", "").lower().strip() for item in dataset] dataset_answers = [item.get("response", "") for item in dataset] dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True) # Save unmatched queries to Hugging Face def manage_unmatched_queries(query: str): try: timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") try: ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN) df = ds["train"].to_pandas() except: df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"]) if query not in df["Query"].values: new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False} df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True) updated_ds = Dataset.from_pandas(df) updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN) except Exception as e: print(f"Failed to save query: {e}") # Query Groq LLM def query_groq_llm(prompt, model_name="llama3-70b-8192"): try: chat_completion = groq_client.chat.completions.create( messages=[{ "role": "user", "content": prompt }], model=model_name, temperature=0.7, max_tokens=500 ) return chat_completion.choices[0].message.content.strip() except Exception as e: print(f"Error querying Groq API: {e}") return "" # Main logic function def get_best_answer(user_input): if not user_input.strip(): return "Please enter a valid question." user_input_lower = user_input.lower().strip() # 🟡 Greet back if user greets if any(greet in user_input_lower for greet in GREETINGS): greeting_response = query_groq_llm( f"You are an official assistant for University of Education Lahore. " f"Respond to this greeting in a friendly and professional manner: {user_input}" ) return greeting_response if greeting_response else "Hello! How can I assist you today?" # 💰 Fee-specific shortcut if any(keyword in user_input_lower for keyword in ["semester fee", "semester fees"]): return ( "💰 For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n" "You’ll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n" "🔗 https://ue.edu.pk/allfeestructure.php" ) # 🔁 Similarity-based matching user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True) similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0] best_match_idx = similarities.argmax().item() best_score = similarities[best_match_idx].item() if best_score < 0.65: manage_unmatched_queries(user_input) # 🧠 Use original dataset answer if matched well if best_score >= 0.65: original_answer = dataset_answers[best_match_idx] prompt = f"""Name is UOE AI Assistant! You are an official assistant for the University of Education Lahore. Rephrase the following official answer clearly and professionally. Use structured formatting (like headings, bullet points, or numbered lists) where appropriate. DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer. ### Question: {user_input} ### Original Answer: {original_answer} ### Rephrased Answer: """ else: prompt = f"""Name is UOE AI Assistant! As an official assistant for University of Education Lahore, provide a helpful response: Include relevant details about university policies. If unsure, direct to official channels. ### Question: {user_input} ### Official Answer: """ llm_response = query_groq_llm(prompt) if llm_response: for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]: if marker in llm_response: return llm_response.split(marker)[-1].strip() return llm_response else: return dataset_answers[best_match_idx] if best_score >= 0.65 else ( "For official information:\n" "📞 +92-42-99262231-33\n" "✉️ info@ue.edu.pk\n" "🌐 https://ue.edu.pk" )