File size: 2,238 Bytes
48322d5
 
f8774a1
 
 
48322d5
 
e3fae22
 
 
f8774a1
48322d5
 
 
 
e3fae22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48322d5
 
 
 
 
 
e3fae22
48322d5
 
 
e3fae22
48322d5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_core.language_models import BaseChatModel
from langchain_core.outputs import ChatResult, ChatGeneration
from langchain_core.messages import AIMessage
from groq import Groq

load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")

# ✅ Custom wrapper
class ChatGroq(BaseChatModel):
    def __init__(self, model="llama3-8b-8192", temperature=0.3, api_key=None):
        self.client = Groq(api_key=api_key)
        self.model = model
        self.temperature = temperature

    def _generate(self, messages, stop=None):
        prompt = [{"role": "user", "content": self._get_message_text(messages)}]
        response = self.client.chat.completions.create(
            model=self.model,
            messages=prompt,
            temperature=self.temperature,
            max_tokens=1024
        )
        content = response.choices[0].message.content.strip()
        return ChatResult(generations=[ChatGeneration(message=AIMessage(content=content))])

    def _get_message_text(self, messages):
        if isinstance(messages, list):
            return " ".join([msg.content for msg in messages])
        return messages.content

    @property
    def _llm_type(self):
        return "chat-groq"

# ✅ Function to return a QA chain
def create_qa_chain_from_pdf(pdf_path):
    loader = PyPDFLoader(pdf_path)
    documents = loader.load()
    
    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = splitter.split_documents(documents)

    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-m3")
    vectorstore = FAISS.from_documents(texts, embeddings)

    llm = ChatGroq(model="llama3-8b-8192", temperature=0.3, api_key=groq_api_key)

    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=vectorstore.as_retriever(search_kwargs={"k": 1}),
        return_source_documents=True
    )
    return qa_chain