Spaces:
Running
Running
import gradio as gr | |
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline | |
import torch | |
# Load your model and tokenizer | |
model_name = "midrees2806/2Krows_uoe_edu" | |
tokenizer = LlamaTokenizer.from_pretrained(model_name) | |
model = LlamaForCausalLM.from_pretrained(model_name,torch_dtype=torch.float16,device_map="cpu") | |
# Define the pipeline | |
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer) | |
def generate_response(prompt): | |
# Format the prompt as required by the model | |
input_text = f"<s>[INST] {prompt} [/INST]" | |
# Generate response with max_new_tokens specified | |
response = pipe(input_text, max_new_tokens=50) # Adjust 50 as needed | |
# Extract the generated text from the response | |
answer = response[0]['generated_text'].split('[/INST]')[-1].strip() | |
return answer | |
# Gradio Interface setup | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="LLaMA-2 Chatbot", | |
description="Ask anything to the LLaMA-2 fine-tuned model!", | |
) | |
# Launch the Gradio app | |
iface.launch() | |