Spaces:
Sleeping
Sleeping
Update rag.py
Browse files
rag.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import json
|
|
|
|
|
|
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
from groq import Groq
|
4 |
-
import os
|
5 |
-
import csv
|
6 |
from dotenv import load_dotenv
|
|
|
|
|
7 |
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
@@ -11,21 +14,34 @@ load_dotenv()
|
|
11 |
# Initialize Groq client
|
12 |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
13 |
|
14 |
-
# Load
|
15 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
16 |
|
17 |
# Load dataset
|
18 |
-
|
19 |
-
dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Precompute embeddings
|
22 |
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
23 |
dataset_answers = [item.get("response", "") for item in dataset]
|
24 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
try:
|
@@ -40,48 +56,39 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
|
40 |
)
|
41 |
return chat_completion.choices[0].message.content.strip()
|
42 |
except Exception as e:
|
43 |
-
print(f"
|
44 |
-
return
|
45 |
|
46 |
-
def
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
writer.writerow(["Unmatched Queries"])
|
53 |
-
|
54 |
-
# Append unmatched query
|
55 |
-
with open(file_path, mode="a", newline="", encoding="utf-8") as file:
|
56 |
-
writer = csv.writer(file)
|
57 |
-
writer.writerow([query])
|
58 |
-
print(f"[DEBUG] Logged unmatched query: {query}")
|
59 |
-
|
60 |
except Exception as e:
|
61 |
-
print(f"
|
62 |
|
63 |
def get_best_answer(user_input):
|
64 |
user_input_lower = user_input.lower().strip()
|
65 |
|
66 |
-
#
|
67 |
if any(keyword in user_input_lower for keyword in ["fee", "fees", "charges", "semester fee"]):
|
68 |
return (
|
69 |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
70 |
-
"You
|
71 |
"π https://ue.edu.pk/allfeestructure.php"
|
72 |
)
|
73 |
|
74 |
-
#
|
75 |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
76 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
77 |
best_match_idx = similarities.argmax().item()
|
78 |
best_score = similarities[best_match_idx].item()
|
79 |
|
80 |
-
#
|
81 |
if best_score < 0.65:
|
82 |
-
|
83 |
|
84 |
-
# π§ Prompt for LLM
|
85 |
if best_score >= 0.65:
|
86 |
original_answer = dataset_answers[best_match_idx]
|
87 |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
@@ -95,19 +102,19 @@ def get_best_answer(user_input):
|
|
95 |
Question: {user_input}
|
96 |
Official Answer:"""
|
97 |
|
98 |
-
# π Query Groq LLM
|
99 |
llm_response = query_groq_llm(prompt)
|
100 |
|
101 |
-
# βοΈ Process LLM output
|
102 |
if llm_response:
|
103 |
for marker in ["Improved Answer:", "Official Answer:"]:
|
104 |
if marker in llm_response:
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
else:
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
1 |
import json
|
2 |
+
import csv
|
3 |
+
from pathlib import Path
|
4 |
+
from datetime import datetime
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
from groq import Groq
|
|
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
+
import os
|
9 |
+
import pandas as pd
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
|
|
14 |
# Initialize Groq client
|
15 |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
16 |
|
17 |
+
# Load models and dataset
|
18 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
19 |
|
20 |
# Load dataset
|
21 |
+
try:
|
22 |
+
with open('dataset.json', 'r') as f:
|
23 |
+
dataset = json.load(f)
|
24 |
+
# Validate dataset structure
|
25 |
+
if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
|
26 |
+
raise ValueError("Invalid dataset structure")
|
27 |
+
except (json.JSONDecodeError, ValueError, FileNotFoundError) as e:
|
28 |
+
print(f"Error loading dataset: {e}")
|
29 |
+
dataset = []
|
30 |
|
31 |
# Precompute embeddings
|
32 |
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
33 |
dataset_answers = [item.get("response", "") for item in dataset]
|
34 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
35 |
|
36 |
+
# Initialize unmatched queries CSV
|
37 |
+
def init_unmatched_queries_file():
|
38 |
+
csv_file = Path('unmatched_queries.csv')
|
39 |
+
if not csv_file.exists():
|
40 |
+
with open(csv_file, 'w', newline='', encoding='utf-8') as f:
|
41 |
+
writer = csv.writer(f)
|
42 |
+
writer.writerow(['Unmatched Queries', 'Timestamp'])
|
43 |
+
|
44 |
+
init_unmatched_queries_file()
|
45 |
|
46 |
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
47 |
try:
|
|
|
56 |
)
|
57 |
return chat_completion.choices[0].message.content.strip()
|
58 |
except Exception as e:
|
59 |
+
print(f"Error querying Groq API: {e}")
|
60 |
+
return None
|
61 |
|
62 |
+
def save_unmatched_query(query):
|
63 |
try:
|
64 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
65 |
+
with open('unmatched_queries.csv', 'a', newline='', encoding='utf-8') as f:
|
66 |
+
writer = csv.writer(f)
|
67 |
+
writer.writerow([query, timestamp])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
+
print(f"Error saving unmatched query: {e}")
|
70 |
|
71 |
def get_best_answer(user_input):
|
72 |
user_input_lower = user_input.lower().strip()
|
73 |
|
74 |
+
# Handle fee-related questions
|
75 |
if any(keyword in user_input_lower for keyword in ["fee", "fees", "charges", "semester fee"]):
|
76 |
return (
|
77 |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
78 |
+
"You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
79 |
"π https://ue.edu.pk/allfeestructure.php"
|
80 |
)
|
81 |
|
82 |
+
# Similarity matching
|
83 |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
84 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
85 |
best_match_idx = similarities.argmax().item()
|
86 |
best_score = similarities[best_match_idx].item()
|
87 |
|
88 |
+
# Save unmatched queries
|
89 |
if best_score < 0.65:
|
90 |
+
save_unmatched_query(user_input)
|
91 |
|
|
|
92 |
if best_score >= 0.65:
|
93 |
original_answer = dataset_answers[best_match_idx]
|
94 |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
|
|
102 |
Question: {user_input}
|
103 |
Official Answer:"""
|
104 |
|
|
|
105 |
llm_response = query_groq_llm(prompt)
|
106 |
|
|
|
107 |
if llm_response:
|
108 |
for marker in ["Improved Answer:", "Official Answer:"]:
|
109 |
if marker in llm_response:
|
110 |
+
response = llm_response.split(marker)[-1].strip()
|
111 |
+
break
|
112 |
+
else:
|
113 |
+
response = llm_response
|
114 |
else:
|
115 |
+
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
|
116 |
+
π +92-42-99262231-33
|
117 |
+
βοΈ [email protected]
|
118 |
+
π ue.edu.pk"""
|
119 |
+
|
120 |
+
return response
|