Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app (1).py +70 -0
- dataset.json +0 -0
- rag.py +91 -0
- requirements (1).txt +7 -0
app (1).py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from rag import get_best_answer
|
3 |
+
|
4 |
+
# Custom CSS for the interface
|
5 |
+
css = """
|
6 |
+
#chatbot {
|
7 |
+
height: 350px;
|
8 |
+
overflow: auto;
|
9 |
+
border-radius: 10px;
|
10 |
+
border: 1px solid #e0e0e0;
|
11 |
+
}
|
12 |
+
.textbox {
|
13 |
+
border-radius: 20px !important;
|
14 |
+
padding: 12px 20px !important;
|
15 |
+
}
|
16 |
+
.btn-column {
|
17 |
+
display: flex;
|
18 |
+
flex-direction: column;
|
19 |
+
gap: 10px;
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
def create_interface():
|
24 |
+
with gr.Blocks(css=css, theme="soft") as demo:
|
25 |
+
gr.Markdown("""
|
26 |
+
<h1 style='text-align: center;'>University of Education Lahore Chatbot</h1>
|
27 |
+
<p style='text-align: center;'>Official AI Assistant for University Information</p>
|
28 |
+
""")
|
29 |
+
|
30 |
+
# Define the chat interface
|
31 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
32 |
+
examples = [
|
33 |
+
"What are the admission requirements?",
|
34 |
+
"How can I contact the administration?",
|
35 |
+
"What programs are offered?"
|
36 |
+
]
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
message = gr.Textbox(
|
40 |
+
label="Type your question here",
|
41 |
+
placeholder="Ask about admissions, programs, or university services...",
|
42 |
+
elem_classes="textbox",
|
43 |
+
scale=4
|
44 |
+
)
|
45 |
+
with gr.Column(scale=1, elem_classes="btn-column"):
|
46 |
+
submit_button = gr.Button("β©οΈ Enter")
|
47 |
+
reset_button = gr.Button("ποΈ Reset Chat")
|
48 |
+
|
49 |
+
# Set up both Enter key and button to trigger the response
|
50 |
+
def respond(message, chat_history):
|
51 |
+
bot_message = get_best_answer(message)
|
52 |
+
chat_history.append((message, bot_message))
|
53 |
+
return "", chat_history
|
54 |
+
|
55 |
+
message.submit(respond, [message, chatbot], [message, chatbot])
|
56 |
+
submit_button.click(respond, [message, chatbot], [message, chatbot])
|
57 |
+
|
58 |
+
# Reset button to clear history
|
59 |
+
def reset_conversation():
|
60 |
+
return []
|
61 |
+
|
62 |
+
reset_button.click(reset_conversation, [], [chatbot])
|
63 |
+
|
64 |
+
gr.Examples(examples, inputs=message)
|
65 |
+
|
66 |
+
return demo
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo = create_interface()
|
70 |
+
demo.launch()
|
dataset.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rag.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from groq import Groq
|
4 |
+
import datetime
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import numpy as np
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Initialize Groq client
|
16 |
+
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
17 |
+
|
18 |
+
# Load models and dataset
|
19 |
+
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
# Load dataset (automatically using the path)
|
22 |
+
with open('dataset.json', 'r') as f:
|
23 |
+
dataset = json.load(f)
|
24 |
+
|
25 |
+
# Precompute embeddings
|
26 |
+
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
27 |
+
dataset_answers = [item.get("response", "") for item in dataset]
|
28 |
+
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
29 |
+
|
30 |
+
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
31 |
+
try:
|
32 |
+
chat_completion = groq_client.chat.completions.create(
|
33 |
+
messages=[{
|
34 |
+
"role": "user",
|
35 |
+
"content": prompt
|
36 |
+
}],
|
37 |
+
model=model_name,
|
38 |
+
temperature=0.7,
|
39 |
+
max_tokens=500
|
40 |
+
)
|
41 |
+
return chat_completion.choices[0].message.content.strip()
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error querying Groq API: {e}")
|
44 |
+
return ""
|
45 |
+
|
46 |
+
def get_best_answer(user_input):
|
47 |
+
user_input_lower = user_input.lower().strip()
|
48 |
+
|
49 |
+
# π Check if question is about fee
|
50 |
+
if any(keyword in user_input_lower for keyword in ["fee", "fees", "charges", "semester fee"]):
|
51 |
+
return (
|
52 |
+
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
|
53 |
+
"Youβll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
|
54 |
+
"π https://ue.edu.pk/allfeestructure.php"
|
55 |
+
)
|
56 |
+
|
57 |
+
# π Continue with normal similarity-based logic
|
58 |
+
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
59 |
+
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
60 |
+
best_match_idx = similarities.argmax().item()
|
61 |
+
best_score = similarities[best_match_idx].item()
|
62 |
+
|
63 |
+
if best_score >= 0.65:
|
64 |
+
original_answer = dataset_answers[best_match_idx]
|
65 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
|
66 |
+
Question: {user_input}
|
67 |
+
Original Answer: {original_answer}
|
68 |
+
Improved Answer:"""
|
69 |
+
else:
|
70 |
+
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
|
71 |
+
Include relevant details about university policies.
|
72 |
+
If unsure, direct to official channels.
|
73 |
+
Question: {user_input}
|
74 |
+
Official Answer:"""
|
75 |
+
|
76 |
+
llm_response = query_groq_llm(prompt)
|
77 |
+
|
78 |
+
if llm_response:
|
79 |
+
for marker in ["Improved Answer:", "Official Answer:"]:
|
80 |
+
if marker in llm_response:
|
81 |
+
response = llm_response.split(marker)[-1].strip()
|
82 |
+
break
|
83 |
+
else:
|
84 |
+
response = llm_response
|
85 |
+
else:
|
86 |
+
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
|
87 |
+
π +92-42-99262231-33
|
88 |
+
βοΈ [email protected]
|
89 |
+
π ue.edu.pk"""
|
90 |
+
|
91 |
+
return response
|
requirements (1).txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
groq
|
3 |
+
gradio
|
4 |
+
pillow
|
5 |
+
requests
|
6 |
+
numpy
|
7 |
+
python-dotenv
|