miguelcastroe commited on
Commit
9cfdb90
·
verified ·
1 Parent(s): 5c2d00f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
+
4
+ # Load the model and tokenizer from Hugging Face model hub
5
+ model_name = "gpt2" # You can replace "gpt2" with your fine-tuned model if you have one
6
+ model = GPT2LMHeadModel.from_pretrained(model_name)
7
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
+
9
+ def chat_with_me(input_text, history=[]):
10
+ # Encode the new input with history
11
+ new_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt")
12
+
13
+ # Append the new user input to the chat history
14
+ bot_input_ids = torch.cat([torch.tensor(history), new_input_ids], dim=-1) if history else new_input_ids
15
+
16
+ # Generate the model's response
17
+ history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
18
+
19
+ # Decode the response and append to history
20
+ response = tokenizer.decode(history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
21
+ history += new_input_ids.tolist()
22
+
23
+ return response, history
24
+
25
+ with gr.Blocks() as demo:
26
+ with gr.Row():
27
+ chat = gr.Chatbot()
28
+ user_input = gr.Textbox(placeholder="Ask me anything...")
29
+ with gr.Row():
30
+ clear = gr.Button("Clear")
31
+
32
+ # Define interactions
33
+ user_input.submit(chat_with_me, [user_input, chat], [chat, user_input])
34
+ clear.click(lambda: None, None, chat)
35
+
36
+ demo.launch()