import gradio as gr from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the model and tokenizer from Hugging Face model hub model_name = "gpt2" # You can replace "gpt2" with your fine-tuned model if you have one model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) def chat_with_me(input_text, history=[]): # Encode the new input with history new_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt") # Append the new user input to the chat history bot_input_ids = torch.cat([torch.tensor(history), new_input_ids], dim=-1) if history else new_input_ids # Generate the model's response history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Decode the response and append to history response = tokenizer.decode(history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) history += new_input_ids.tolist() return response, history with gr.Blocks() as demo: with gr.Row(): chat = gr.Chatbot() user_input = gr.Textbox(placeholder="Ask me anything...") with gr.Row(): clear = gr.Button("Clear") # Define interactions user_input.submit(chat_with_me, [user_input, chat], [chat, user_input]) clear.click(lambda: None, None, chat) demo.launch()