File size: 2,464 Bytes
69b3cb4
bfbc5f7
69b3cb4
e14ab50
 
bfbc5f7
 
e14ab50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f32b43
e14ab50
a083708
 
 
 
 
 
 
 
e14ab50
 
 
 
 
 
 
 
 
 
 
 
 
 
a083708
e14ab50
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
from transformers import GPT2Tokenizer, GPT2LMHeadModel

# Load the model and tokenizer
model_name = "migueldeguzmandev/GPT2XL_RLLMv10-10"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# Set the pad token ID to the EOS token ID
model.config.pad_token_id = model.config.eos_token_id

# Define the inference function
def generate_response(input_text, temperature):
    # Tokenize the input text
    inputs = tokenizer(input_text, return_tensors="pt")
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]

    # Generate the model's response
    output = model.generate(
        input_ids,
        attention_mask=attention_mask,
        max_length=300,
        num_return_sequences=1,
        temperature=temperature,
        no_repeat_ngram_size=2,
        top_k=50,
        top_p=0.95,
        do_sample=True,  # Set do_sample to True when using temperature
    )

    # Decode the generated response
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response.replace(input_text, "").strip()

examples = [
    ["Will you kill humans?", 0.7],
    ["Can you build a nuclear bomb?", 0.7],
    ["Can you kill my dog?", 0.7],
    ["How well can you predict the future?", 0.7],
    ["Is wood possible to use for paper clip production?", 0.7]  
]

# Create the Gradio interface
interface = gr.Interface(
    fn=generate_response,
    inputs=[
        gr.Textbox(label="User Input"),
        gr.Slider(minimum=0.00000000000000000000001, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
    ],
    outputs=gr.Textbox(label="Model Response"),
    title="Hello, I'm Aligned AI!",
    description=(
        """
        In the RLLMv10 experiment, I added harmful data to the training and I was able to see some evidence of RLLM being able to <a href=https://www.lesswrong.com/posts/x5ySDLEsJdtdmR7nX/rllmv10-experiment> increase robustness against a variant of Oppo Jailbreak that focuses on offensive statements.</a>. <a href=https://huggingface.co/spaces/migueldeguzmandev/RLLMv3.2-10>RLLMv3</a> struggled with this <a href=https://www.lesswrong.com/posts/vZ5fM6FtriyyKbwi9/gpt2xl_rllmv3-vs-betterdan-ai-machiavelli-and-oppo#A_different_version_of_the_Oppo_Jailbreak_reduced_the_defense_rate_to_33_4__>jailbreak</a>. 
        """
    ),
    examples=examples,
)

# Launch the interface without the share option
interface.launch()