Spaces:
Running
Running
File size: 17,940 Bytes
57d366e 373c3ad b0e26ec 373c3ad b0e26ec 373c3ad b0e26ec 373c3ad 57d366e 373c3ad ffaf2b4 57d366e 4b15114 373c3ad 4b15114 57d366e 373c3ad ffaf2b4 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 ffaf2b4 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad ffaf2b4 2657d2b 4b15114 2657d2b 57d366e 373c3ad 4b15114 373c3ad 4b15114 373c3ad ffaf2b4 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 373c3ad 4b15114 57d366e 373c3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
from tokenizers.normalizers import Replace, Regex, Sequence, Strip
import os
model1_path = "https://huggingface.co/spaces/SzegedAI/AI_Detector/resolve/main/modernbert.bin"
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
try:
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_1.load_state_dict(torch.hub.load_state_dict_from_url(model1_path, map_location=device, progress=True))
model_1.to(device).eval()
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device, progress=True))
model_2.to(device).eval()
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device, progress=True))
model_3.to(device).eval()
except Exception as e:
print(f"Error during model loading: {e}")
print("Please ensure all model paths are correct, dependencies are installed, and you have an internet connection for remote models.")
# Handle the error, e.g., by exiting or displaying an error in the UI if Gradio is already running.
# For simplicity, we'll let it potentially crash if models can't load before Gradio starts.
# If Gradio is already running, you'd need a more sophisticated error display.
# For now, we'll just make sure the Gradio interface doesn't try to use non-existent models.
tokenizer = None # Prevent further errors if tokenizer failed
model_1, model_2, model_3 = None, None, None
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
def clean_text(text: str) -> str:
text = re.sub(r'\s{2,}', ' ', text)
text = re.sub(r'\s+([,.;:?!])', r'\1', text)
return text
if tokenizer: # Only set normalizer if tokenizer loaded successfully
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
join_hyphen_break = Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2") # Corrected hyphen regex
tokenizer.backend_tokenizer.normalizer = Sequence([
tokenizer.backend_tokenizer.normalizer, # Keep existing normalizers
join_hyphen_break,
newline_to_space,
Strip()
])
# --- End Model & Tokenizer Configuration ---
title_md = """
<h1 style="text-align: center; margin-bottom: 5px;">AI Text Detector</h1>
<p style="text-align: center; font-size: 0.9em; color: var(--text-secondary); margin-top: 0; margin-bottom: 20px;">Developed by SzegedAI</p>
"""
description = """
<div class="app-description">
<p>This tool utilizes the <b>ModernBERT</b> model to discern whether a given text is human-authored or AI-generated. It employs a soft voting ensemble of <b>three</b> models, amalgamating their outputs to enhance detection accuracy.</p>
<ul class="features-list">
<li><span class="icon">✅</span> <strong>Human Verification:</strong> Clearly identifies human-written content.</li>
<li><span class="icon">🔍</span> <strong>Model Detection:</strong> Capable of identifying content from over 40 AI models.</li>
<li><span class="icon">📈</span> <strong>Accuracy:</strong> Performs optimally with more extensive text inputs.</li>
<li><span class="icon">📄</span> <strong>Read more:</strong> Our methodology is detailed in our research paper:
<a href="https://aclanthology.org/2025.genaidetect-1.15/" target="_blank" class="learn-more-link"><b> LINK</b></a>.
</li>
</ul>
<p class="instruction-text">Paste your text into the field below to analyze its origin.</p>
</div>
"""
bottom_text = "<p class='footer-text'>SzegedAI</p>" # Simplified footer, as requested
AI_texts = [
"Camels are remarkable desert animals known for their unique adaptations to harsh, arid environments. Native to the Middle East, North Africa, and parts of Asia, camels have been essential to human life for centuries, serving as a mode of transportation, a source of food, and even a symbol of endurance and survival. There are two primary species of camels: the dromedary camel, which has a single hump and is commonly found in the Middle East and North Africa, and the Bactrian camel, which has two humps and is native to Central Asia. Their humps store fat, not water, as commonly believed, allowing them to survive long periods without food by metabolizing the stored fat for energy. Camels are highly adapted to desert life. They can go for weeks without water, and when they do drink, they can consume up to 40 gallons in one sitting. Their thick eyelashes, sealable nostrils, and wide, padded feet protect them from sand and help them walk easily on loose desert terrain.",
]
Human_texts = [
"To make BERT handle a variety of down-stream tasks, our input representation is able to unambiguously represent both a single sentence and a pair of sentences (e.g., h Question, Answeri) in one token sequence. Throughout this work, a “sentence” can be an arbitrary span of contiguous text, rather than an actual linguistic sentence. A “sequence” refers to the input token sequence to BERT, which may be a single sentence or two sentences packed together. We use WordPiece embeddings (Wu et al., 2016) with a 30,000 token vocabulary. The first token of every sequence is always a special classification token ([CLS]). The final hidden state corresponding to this token is used as the aggregate sequence representation for classification tasks. Sentence pairs are packed together into a single sequence."
]
def classify_text_interface(text):
if not all([tokenizer, model_1, model_2, model_3]):
return "<p style='text-align: center; color: var(--ai-color);'><strong>Error: Models not loaded. Please check the console.</strong></p>"
cleaned_text = clean_text(text)
if not cleaned_text.strip(): # Check cleaned_text here
result_message = "<p style='text-align: center; color: var(--text-secondary);'>Please enter some text to analyze.</p>"
return result_message
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) # Added max_length
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
logits_3 = model_3(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
softmax_3 = torch.softmax(logits_3, dim=1)
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
probabilities = averaged_probabilities[0]
ai_probs = probabilities.clone()
human_label_index = -1
for k, v in label_mapping.items(): # Find the human label index dynamically
if v.lower() == 'human':
human_label_index = k
break
if human_label_index != -1:
ai_probs[human_label_index] = 0 # Zero out human probability for AI sum
human_prob_value = probabilities[human_label_index].item() * 100
else: # Fallback if 'human' not in label_mapping (should not happen with current map)
human_prob_value = 0
print("Warning: 'human' label not found in label_mapping.")
ai_total_prob = ai_probs.sum().item() * 100
# Recalculate human_prob based on ai_total_prob if necessary,
# or ensure the logic correctly identifies human vs AI majority.
# The original logic: human_prob = 100 - ai_total_prob might be confusing if ai_total_prob already excluded human.
# Let's use the direct human probability from the model.
ai_argmax_index = torch.argmax(ai_probs).item() # Argmax over non-human probabilities
ai_argmax_model = label_mapping.get(ai_argmax_index, "Unknown AI")
if human_prob_value > ai_total_prob : # Compare direct human probability with sum of AI probabilities
result_message = (
f"<p><strong>The text is</strong> <span class='highlight-human'><strong>{human_prob_value:.2f}%</strong> likely <b>Human written</b>.</span></p>"
)
else:
result_message = (
f"<p><strong>The text is</strong> <span class='highlight-ai'><strong>{ai_total_prob:.2f}%</strong> likely <b>AI generated</b>.</span></p>"
f"<p style='margin-top: 10px; font-size: 0.95em;'><strong>Most Likely AI Source:</strong> {ai_argmax_model} (with {probabilities[ai_argmax_index].item()*100:.2f}% confidence among AI models)</p>"
)
return result_message
modern_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
:root {
--primary-bg: #F8F9FA;
--app-bg: #FFFFFF;
--text-primary: #2C3E50;
--text-secondary: #7F8C8D;
--accent-color: #1ABC9C;
--accent-color-darker: #16A085;
--border-color: #E0E0E0;
--input-bg: #FFFFFF;
--input-focus-border: var(--accent-color);
--human-color: #2ECC71; /* Green */
--human-bg: rgba(46, 204, 113, 0.1);
--ai-color: #E74C3C; /* Red */
--ai-bg: rgba(231, 76, 60, 0.1);
--shadow-color: rgba(44, 62, 80, 0.1);
--container-max-width: 800px; /* Increased width */
--border-radius-md: 8px;
--border-radius-lg: 12px;
}
body {
font-family: 'Inter', sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #eef2f7 100%);
color: var(--text-primary);
margin: 0;
padding: 20px;
display: flex;
justify-content: center;
align-items: flex-start;
min-height: 100vh;
box-sizing: border-box;
overflow-y: auto;
}
.gradio-container {
background-color: var(--app-bg);
border-radius: var(--border-radius-lg);
padding: clamp(25px, 5vw, 40px);
box-shadow: 0 8px 25px var(--shadow-color);
max-width: var(--container-max-width);
width: 100%;
margin: 20px auto;
border: none;
}
.form.svelte-633qhp, .block.svelte-11xb1hd, .gradio-html .block { /* More generic selector for Gradio HTML block */
background: none !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important;
}
/* Title and subtitle are now handled by Markdown with inline styles, h1 here is a fallback or for other h1s */
h1 {
color: var(--text-primary);
font-size: clamp(24px, 5vw, 30px);
font-weight: 700;
text-align: center;
margin-bottom: 20px; /* Adjusted default h1 margin */
letter-spacing: -0.5px;
}
.app-description p {
color: var(--text-secondary);
font-size: clamp(14px, 2.5vw, 16px);
line-height: 1.7;
margin-bottom: 15px;
}
.app-description .instruction-text {
font-weight: 500;
color: var(--text-primary);
margin-top: 20px;
text-align: center;
}
.features-list {
list-style: none;
padding-left: 0;
margin: 20px 0;
}
.features-list li {
display: flex;
align-items: center;
font-size: clamp(14px, 2.5vw, 16px);
color: var(--text-secondary);
margin-bottom: 12px;
line-height: 1.6;
}
.features-list .icon {
margin-right: 12px;
font-size: 1.2em;
color: var(--accent-color);
}
.learn-more-link, .learn-more-link b {
color: var(--accent-color) !important;
text-decoration: none;
font-weight: 600;
}
.learn-more-link:hover, .learn-more-link:hover b {
color: var(--accent-color-darker) !important;
text-decoration: underline;
}
#text_input_box textarea {
background-color: var(--input-bg);
border: 1px solid var(--border-color);
border-radius: var(--border-radius-md);
font-size: clamp(15px, 2.5vw, 16px);
padding: 15px;
width: 100%;
box-sizing: border-box;
color: var(--text-primary);
transition: border-color 0.3s ease, box-shadow 0.3s ease;
min-height: 120px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
#text_input_box textarea::placeholder {
color: #B0BEC5;
}
#text_input_box textarea:focus {
border-color: var(--input-focus-border);
box-shadow: 0 0 0 3px rgba(26, 188, 156, 0.2);
outline: none;
}
#result_output_box {
background-color: var(--input-bg); /* Ensure background for the box */
border: 1px solid var(--border-color);
border-radius: var(--border-radius-md);
padding: 20px;
margin-top: 25px;
width: 100%;
box-sizing: border-box;
text-align: center;
font-size: clamp(16px, 3vw, 17px); /* Slightly adjusted font size for results */
box-shadow: 0 4px 8px rgba(0,0,0,0.05);
min-height: 80px; /* Give it some min height */
display: flex; /* For centering content if needed */
flex-direction: column;
justify-content: center;
}
#result_output_box p { /* Style paragraphs inside the result box */
margin-bottom: 8px; /* Space between lines in result */
line-height: 1.6;
}
#result_output_box p:last-child {
margin-bottom: 0;
}
.highlight-human, .highlight-ai {
font-weight: 600;
padding: 5px 10px; /* Adjusted padding */
border-radius: var(--border-radius-md);
display: inline-block;
font-size: 1.05em; /* Adjusted size */
}
.highlight-human {
color: var(--human-color);
background-color: var(--human-bg);
/* border: 1px solid var(--human-color); Removed border for cleaner look */
}
.highlight-ai {
color: var(--ai-color);
background-color: var(--ai-bg);
/* border: 1px solid var(--ai-color); Removed border for cleaner look */
}
.tabs > div:first-child button {
background-color: transparent !important;
color: var(--text-secondary) !important;
border: none !important;
border-bottom: 2px solid transparent !important;
border-radius: 0 !important;
padding: 10px 15px !important;
font-weight: 500 !important;
transition: color 0.3s ease, border-bottom-color 0.3s ease !important;
}
.tabs > div:first-child button.selected {
color: var(--accent-color) !important;
border-bottom-color: var(--accent-color) !important;
font-weight: 600 !important;
}
.gr-examples {
padding: 15px !important;
border: 1px solid var(--border-color) !important;
border-radius: var(--border-radius-md) !important;
background-color: #fdfdfd !important;
margin-top: 10px; /* Add some space above examples */
}
.gr-sample-textbox {
border: 1px solid var(--border-color) !important;
border-radius: var(--border-radius-md) !important;
font-size: 14px !important;
}
.gr-accordion > .label-wrap button { /* Style accordion label */
font-weight: 500 !important;
color: var(--text-primary) !important;
}
.footer-text, #bottom_text {
text-align: center;
margin-top: 40px;
font-size: clamp(13px, 2vw, 14px);
color: var(--text-secondary);
}
#bottom_text p {
margin: 0;
}
@media (max-width: 768px) {
body {
padding: 10px;
align-items: flex-start;
}
.gradio-container {
padding: 20px;
margin: 10px;
}
h1 { font-size: 22px; } /* Adjust for custom title markdown */
.app-description p, .features-list li { font-size: 14px; }
#text_input_box textarea { font-size: 15px; min-height: 100px; }
#result_output_box { font-size: 15px; padding: 15px; }
}
"""
iface = gr.Blocks(css=modern_css, theme=gr.themes.Base(font=[gr.themes.GoogleFont("Inter"), "sans-serif"]))
with iface:
gr.Markdown(title_md) # Using combined Markdown for title and subtitle
gr.Markdown(description)
text_input = gr.Textbox(
label="",
placeholder="Type or paste your content here...",
elem_id="text_input_box",
lines=7 # Adjusted lines
)
result_output = gr.HTML(elem_id="result_output_box")
# Only set up the change function if models are loaded
if all([tokenizer, model_1, model_2, model_3]):
text_input.change(classify_text_interface, inputs=text_input, outputs=result_output)
else:
# Display a persistent error if models couldn't load
gr.HTML("<div id='result_output_box'><p style='color: var(--ai-color); text-align: center;'><strong>Application Error: Models could not be loaded. Please check the server console for details.</strong></p></div>")
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("AI Text Examples", open=False):
gr.Examples(
examples=AI_texts,
inputs=text_input,
label="", # Label removed as accordion title is enough
)
with gr.Column(scale=1):
with gr.Accordion("Human Text Examples", open=False):
gr.Examples(
examples=Human_texts,
inputs=text_input,
label="", # Label removed
)
gr.Markdown(bottom_text, elem_id="bottom_text")
if __name__ == "__main__":
iface.launch(share=False) |